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Approach to equilibrium in N-body gravitational systems
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The evolution of closed gravitational systems is studied by means ofN-body simulations. This, as well as
being interesting in its own right, provides insight into the dynamical and statistical mechanical properties of
gravitational systems: the possibility of the existence of stable equilibrium states and the associated relaxation
time would provide an ideal situation where relaxation theory can be tested. Indeed, these states are found to
exist for single massN-body systems, and the condition for this is simply that obtained from elementary
thermodynamical considerations applied to self-gravitating ideal gas spheres. However, even when this con-
dition is satisfied, some initial states may not end as isothermal spheres. It is therefore only a necessary
condition. Simple considerations also predict that, for fixed total mass, energy, and radius, stable isothermal
spheres are unique. Therefore, statistically irreversible perturbations to the density profile, caused by the
accumulation of massive particles near the center of multimass systems, destroy these equilibria if the afore-
mentioned quantities are kept fixed. The time scale for this to happen was found to be remarkably short~a few
dynamical times whenN52500) in systems undergoing violent relaxation. The time taken to achieve thermal
equilibrium depended on the initial conditions and could be comparable to a dynamical time~even when the
conditions for violent relaxation were not satisfied! or the two body relaxation time. The relaxation time for
velocity anisotropies was intermediate between these two time scales, being long compared to the dynamical
time but much~about four times! shorter than the time scale of energy relaxation. This last result, along with
the observation of the anomalously rapid mass segregation in some situations, suggests that, in gravitational
systems, different quantities may relax at different rates, and that the thermal~two body! relaxation time scale,
even if accurate for energy relaxation of single mass systems, may not be universal. This in turn indicates that
the issue of relaxation in gravitational systems is far from being a closed subject.@S1063-651X~98!10209-X#

PACS number~s!: 05.70.Ln, 98.10.1z, 02.60.2x, 03.20.1i
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I. INTRODUCTION AND MOTIVATION

The peculiarity of gravitational interactions compared
those governing laboratory systems can be illustrated by
following example. An orbiting satellite on a circular pa
loses energy~by dissipation say! and drops to another~also
circular! orbit with a smaller radius. The result is that i
circular velocity increases, even though its total energy de
creased. This situation is easily translated into the langu
of large N-body systems in virial equilibrium. In this cas
the kinetic and potential energies are related by 2T1V50,
which implies that the total energyE52T. Decreasing the
total energy will therefore be equivalent to increasing
kinetic energy@1–3#. That is, the system hasnegative spe-
cific heat—since taking energy away from it heats it up.
one is able to apply this logic to subsystems of a grav
tional configuration in dynamical equilibrium, one can s
that ‘‘heat’’ will effectivelyflow from hotter regions~those
having larger average random kinetic energy! to cooler
ones—which implies that any temperature gradient is
hanced instead of being erased.

Any increase in the kinetic energy of a system in vir
equilibrium is bound~by the virial relation! to decrease its
potential energy. In a spherical system of massM and radius
R, the potential energy is given by

V52
gGM2

R
, ~1!
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whereg is a constant which depends on the density distri
tion of the system~and is larger for centrally concentrate
objects!. Decreasing the potential energy will therefore im
ply a decrease in radius or an increase in central concen
tion. If a situation arises where a gravitational system can
a first approximation, be considered to be composed o
centrally concentrated core in virial equilibrium which
hotter than a surrounding shell, the core will lose energy
the surrounding shell and contract, while getting still hott
If the surrounding halo cannot heat fast enough, we hav
runaway instability, with the system evolving toward stat
that are less and less homogeneous in both physical and
locity spaces@1,2#. This phenomenon has been termed
‘‘gravothermal catastrophe’’ by Lynden-Bell and Wood@4#.
A system undergoing such evolution, instead of tending
ward a most probable final equilibrium state, can increase
Boltzmann entropy indefinitely—simply by evolving
denser core and a more diffuse halo@1#.

Thermal equilibrium configurations do nevertheless ex
for gravitational systems. For open~spatially unbound! sys-
tems, however, these turn out to be infinite. In a clos
spherical system, the boundary has the effect of adding
external pressure term to the virial equation. The kinetic a
potential energies are then related by 2T/V>1. If this ratio is
very large, the behavior will be similar to that of a norm
laboratory system—and a constant temperature~almost! spa-
tially homogeneous equilibrium configuration will exist. I
on the other hand, the potential energy is comparable to
kinetic energy, then peculiar effects related to the nature
4152 © 1998 The American Physical Society
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PRE 58 4153APPROACH TO EQUILIBRIUM IN N-BODY . . .
gravitational interactions will dominate. It turns out that t
precise criterion for avoiding gravothermal instability in a
ideal gassphere is@4–6#

m5
ER

GM2
>20.335. ~2!

Enclosed gas spheres for which Eq.~2! holds may reach
constant temperature equilibria with a well defin
asymptotic statistical distribution. These are often referred
as ~Lane-Embden! isothermal spheres, because their fin
distribution functions obey the usual Maxwell-Boltzman
statistics of an isothermal gas. It is easy to see that for
tems in virial equilibrium ER/GM252g/2. In the case
when the density decreases with radius,g cannot be smaller
than 3

5 . Almost all systems in virial equilibrium therefore d
not tend toward thermal equilibrium states—since dynam
equilibria of self-gravitating are necessarily strongly inh
mogeneous, with density decreasing with radius. In such
tems the central core may behave almost as if it is an in
pendent subsystem in virial equilibrium, and its~rather weak
but important! interaction with the outer regions will lead t
a gravothermal catastrophe.

Maximum entropy solutions of the collisionless Bolt
mann equation~CBE! which have constant velocity dispe
sions also obey Maxwell-Boltzmann statistics and, by an
ogy, are also referred to as isothermal spheres. Intuitiv
therefore, one would expect condition~2! to hold for spheri-
cal stellar systems@1#. Indeed, alocal stability analysis based
on a detailed treatment of the statistical mechanics of gr
tating systems seems to confirm this@7,8#. However, the
aforementioned solutions of the CBE are obtained by c
straining the energy, not the temperature. Therefore, stri
speaking, they represent constant-energy solutions, ra
than isothermal solutions in the standard sense.

By global minimization of free energy one can obta
truly isothermal solutions@9#. In this case, however, the con
ditions for the existence of stable isothermal equilibrium
found to be much stricter. For an unsoftened 1/r potential, an
isothermal gravitational system which obeys classical m
chanics will contract to a point. For softened systems~with
which we shall be concerned here!, other isothermal solu-
tions exist. Whenm is very large~of the order of the inverse
of the softening length!, these overlap with the Lane-Embde
isothermal spheres. For smaller values ofm the latter only
represent local entropy maxima. Thus, as shown b
Kiessling @9#, even systems satisfying Eq.~2! may undergo
gravothermal catastrophe. In this case, Lane-Embden ‘‘
thermal spheres’’ no longer represent true isothermal e
libria. To distinguish them from the latter, such states will,
general, be referred to asthermal equilibria ~or isothermal
spheres!. Other authors have doubted the very validity of t
use of entropy maximization or canonical ensemble stat
cal mechanics~on which all of the above conclusions a
based! in systems with long range forces@10#. The validity
of relation~2! will be one of the issues we will be examinin
numerically in this paper.

The existence of a final equilibrium state provides an i
alized situation, whereas the dynamics of gravitational s
tems can be studied for long times by means of part
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simulations, without the macroscopic time dependence n
essarily characteristic of the evolution of open gravitatio
systems. This may, for example, be useful in studying
stability of trajectories of particles inN-body systems, their
ergodic properties, the diffusion rates of their action va
ables, and the possible relationship between these prope
~for more details concerning the motivations behind such
exercise see the concluding section of Ref.@11#!. So far this
has been done only for one-dimensional~1D! gravitational
systems@12#. It is not clear, however, how the behavior o
these systems, consisting of a series of infinite sheets, re
to that of generic three-dimensional gravitational ones.
particular, the force between the ‘‘particles’’ in these sy
tems is constant most of the time, but discontinuous wh
they cross each other; thus much of the body of rigoro
results concerning the stability of dynamical systems, wh
is evidently useful in understanding the properties mentio
above, does not apply@13#. Nevertheless, we will find some
interesting parallels between the behavior of these syst
and the three-dimensional softened systems described
Comparison between the behavior of the two types of s
tems may thus guide further exploration of relevant prop
ties of 1D systems~which may be simulated more accurate
for much longer times!.

The existence of a well defined relaxation time provide
clean test for the relaxation theory of gravitational system
and insight into the nature of the relaxation process. Thi
important for the following reasons. First, there is still mu
debate as to how a system actually achieves a relaxeddy-
namical equilibrium. Violent relaxation, the original mecha
nism suggested for this process, is still not very well und
stood @2,14#. It is still not clear whether a dynamically
relaxed final state is necessarily related to this process
whether the conditions for violent relaxation did exist in t
early history of most stellar systems. The second reaso
related to the question as to under which conditions~if any!
classical ‘‘collisional’’ relaxation theory@1,2,15–17# holds.
Controversial since its original formulation@18#, due to its
description of discreteness effects as independent two b
encounters added to the mean field motion~something that
cannot bea priori justified in a nonlinear system!, it is nev-
ertheless commonly accepted as valid. Although there se
to be some justification to its use in describing the ene
relaxation of particles inN-body gravitational systems@19#,
and indeed much of the limited numerical evidence@20–23#
seems to point in that direction, it seems hardly justified t
the validity of this time scale be taken for granted~as is
almost always done in research on dynamical astrono!
without strict tests, pending rigorous theoretical justificatio
for the approximations made in deriving it@24#. Indeed, it is
not uncommon to find in numerical simulations that sign
cant effects arising from discreteness noise take place o
scale much shorter than the standard two body relaxa
time @25#.

Whether it does predict the energy relaxation time c
rectly or not, the dynamical picture upon which standa
relaxation theory is based appears to be flawed, since it
plicitly assumes that gravitationalN-body systems are inte
grable and remain so under perturbations due to discreten
This is modeled asadditivestochastic noise. The final resu
is a simple linear superposition of two independe
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4154 PRE 58A. A. EL-ZANT
solutions—the regular motion in the mean field and that
der the influence of the stochastic force. However, it is n
well known @26–28# that largeN-body gravitational system
display sensitivity to changes in their initial condition
which are characteristic of chaotic dynamical systems,
that this appears to be related to their being systems
predominantly negative configuration space curvat
@29,30,19,11,31#—thus having qualitative properties ver
different from those of integrable systems. It is therefo
plausible that quantities that depend on the details of
N-body trajectories~as opposed to quantities like energ
which is a scalar path independent integral of motion! may
relax on time scales that are different from the standard
laxation time @32#. This may affect important observab
quantities, like the degree anisotropy in a given system
example. In addition, there are situations when it is clear
the relaxation phenomena involved are beyond the app
bility of simple classical two body relaxation theory. E
amples of such effects include those arising from the mo
of massive particles in anN-body system@2#, and the inter-
action of discreteness noise with the global mean field mo
of a system@33#. Theories concerning such effects are
less well established than standard two body relaxa
~whereas the approximations made, although not resting
rigorous theoretical grounds, are at least familiar from
theory of stochastic processes and well formulated@34#!.

This paper has the basic aim of testing, through dir
N-body simulations, some of the theory concerning isoth
mal spheres, and showing how conclusions of import
physical interest—mainly concerning the dynamical rela
ation of gravitational systems—can be obtained from t
type of study. Thus we show the existence of stableN-body
realizations of isothermal spheres for single mass syste
and determine the characteristic time scales for achiev
this state~Sec. IV!. We also examine the time scale of rela
ation towards isotropy for systems with initially anisotrop
velocity dispersion tensor~Sec. V!. By simulating multimass
systems where heavier particles tend to reside toward
center—thus modifying the isothermal sphere density pro
—we check if, for a given total energy, mass, and radi
such configurations have a unique density distribution~Sec.
VI !. In the process, the time scale of mass segregatio
evaluated. Finally~Sec. VII!, we will check if the condition
distinguishingN-body systems that collapse from ones th
find a stable thermal equilibrium state is similar to that
the existence of a stable self-gravitating ideal gas sphere@Eq.
~2!#. We start by describing the direct summation gravi
tional N-body code used in this paper, and other techn
details like the generation of initial data and the units us
~Secs. II and III!.

II. NUMERICAL METHOD

The main computational load in the integration of a gra
tationalN-body system lies in the calculation of the particl
particle forces, which, when summed directly, take a ti
proportional to the square of the particle number to comp
Many different techniques have been devised in order
speed up the force calculations~for example ‘‘tree’’ tech-
niques @35# and adaptive particle mesh methods@36#!. As
usual, there is always a tradeoff between computational
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ciency and accuracy. While the aforementioned techniq
are very powerful~the CPU time spent in the force calcula
tions scales asN logN at the worst!, they are not very
accurate—one does not expect that, in general, the part
particle interactions will be calculated to an accuracy mu
better than few percent. This makes them unsuitable
work in which high accuracy is required, or when the natu
of the motion under the influence of gravitational forces
itself the object of study.

The NBODY2 code @37# used to run the simulations de
scribed in this paper is one of the many efficient routin
devised by Sverre Aarseth, and which are kindly provided
him upon request. It is a direct summation code which u
individual time steps for each particle in the simulation@38#,
and speeds up the force calculation by using the Ahm
Cohen@39# neighbor scheme which, in the spirit of tree tec
niques, separates the force calculations for neighboring
ticles and those further off—albeit in a somewhat differe
manner than tree methods. These improvements take
account the very different natural times (;1/Ar, r being
the local density! in a gravitational system, and the fact tha
at a given point, theirregular force due to nearby neighbor
varies much faster than theregular force due to particles
further off.

The errors in the calculations~as measured by energ
conservation! are controlled by an accuracy parameterh
which determines the size of the integration time ste
These errors are constant for values ofh below 0.01, and
increase ash2 for higher values@40#. We have found that a
value ofh irr50.02 ~controlling the irregular time step! gave
reasonably accurate results while maintaining efficient r
ning of the code~both of these aspects depended on the t
of enclosure bounding our systems, as we will see belo!.
The tolerance parameter for the regular time step was ta
ash reg50.04. The softening length was fixed atep5 1

500.
To perform any experiments on closed systems, we ob

ously have to find a practical numerical procedure for encl
ing them. There is of course more than one way of do
this. For example, one can just reverse the radial compo
of the velocities of particles that are found to be beyond
certain radius. Alternatively, one can impose ‘‘period
boundary conditions,’’ a situation in which particles esca
ing from one side of a system reappear on the opposite s
Both these conditions, however, destroy the smoothnes
the dynamical system under consideration—in the first c
the force can become infinite, while, in the second, some
the variables become discontinuous. It is upon the assu
tion of smoothness that many of the rigorous results of
namical systems stability theory and the conclusions dra
from it are based@13#. These may be important in unde
standing some properties of gravitational dynamics, sinc
appears that large gravitational systems are close to sm
hyperbolic ones, and it has been suggested that this prop
may play a role in determining some of their dynamical ch
acteristics@29,30,19,11,31#.

In order to conserve the differentiability of~softened!
N-body gravitational dynamical systems, we have opted
the following procedure. We surround the system by
‘‘elastic shell,’’ in the sense that a particle venturing beyo
a given radiusr 5r 0 experiences a restoring force
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Fres52mK~r 2r 0!2n21r̂ , ~3!

wherer̂ is the radial unit vector at the particle’s position, a
m is its mass. This central force law ensures the conserva
of both the energy and angular momentum of individu
particles—an important property if one is studying rela
ational phenomena.

Although the choice of the constantsK andn is to a large
extent arbitrary,K has to be chosen so that particles do n
venture too far beyondr 5r 0 . Therefore, for large excur
sions, the force has to be strong. However, if the force ri
too steeply at small excursions beyondr 0 , large errors in the
energies of the particles can result~as these gain or los
energy during their entries into and exits from ther .r 0
region when their velocities are largest!. After a few trials,
values ofK51300 andn54 were adopted. This ensure
that, for the accuracy parameters adopted~see above!, the
total energy change over 100 crossing times was always
than 1.5%, and that particles almost never ventured bey
r 2r 050.2 and very rarely beyondr 2r 050.1. The choice
also ensured that the inclusion of the boundary force did
slow down the computation too much~the system of units
used is described below!.

III. INITIAL CONDITIONS AND RELATED PARAMETERS

Throughout this paper we use the units of Heggie a
Mathieu @41#, whereas the total mass and the gravitatio
constant are set to unity. Except for some of the runs in S
VII, where the initial density decreases according to a pow
law in the radius, we start our simulations from homog
neous spatial initial conditions with the boundary atr 051,
thus fixing the potential energy at about3

5 ~give or take ef-
fects due to particle noise and softening!. The total energy is
then determined by the initial virial ratio (T/V). If this is
equal to 0.5~virial equilibrium in the absence of enclosure!,
then themean crossing timeis calculated from@37#

Tcr5M5/2/~22E!3/2, ~4!

which amounts to two time units. If theT/V.0.5, the cross-
ing time is shorter. However, considering that the cross
time is only defined as an order of magnitude quantity a
that our systems will usually have virial ratios not too diffe
ent from 0.5, we stick to this definition.

Systems were started from several initial velocity profil
In the more frequently used distributions, the velocity ve
tors take random directions, with their magnitudes either
creasing or increasing with radius according to the expon
tial law

V5V0e2pr, ~5!

where the central velocity is fixed by the chosen virial ra
and radial density distribution. The parameterp either takes
a valuep51, in which case the velocity decreases toward
outside, orp521, for systems started with a ‘‘temperatu
inversion,’’ so that the velocity at the edge of the system w
e times the velocity at the center. We also examined
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evolution of systems starting from anisotropic initial cond
tions with the anisotropy increasing toward the outside
cording to the prescription

Vl5Vl0e2sAlr , ~6!

where l 51 and 3 denotes the Cartesian coordinatesx, y,
andz, respectively. The factors takes a value ofs51 unless
otherwise stated. In one of the runs~Sec. V!, the system is
started with two of the velocity coordinates~for all particles!
set to zero.

In some of the runs it was important that our systems
not start too far from virial equilibrium, so that violent relax
ation is ~presumably! not effective. There is a well known
formula ~Ref. @1#, Eq. 8P-2! for the condition of virial equi-
librium of a system on which external forces are applie
Unfortunately, however, when the contribution of the ext
nal potential is included in the calculation of the virial rati
this quantity is highly fluctuating~due to the large contribu
tion from only a few particles which are beyondr 5r 0).
Systems starting from virial equilibrium including th
boundary force did not conserve that equilibrium. Howev
after looking at the long term evolution of the ratiov ir
52T/V in systems started this way, it was found that, f
systems with initially homogeneous density, this quant
settled to a value betweenv ir 51.32 andv ir 51.38. In ac-
tual trials it was found that isotropic systems started fro
v ir 51.38 and from homogeneous density states conse
this quantity to high accuracy~better than 3%)@42#. In the
anisotropic case described by Eq.~6!, vir was conserved to
better than 6% during the evolution.

For all systems for which the initial value ofv ir 51.38,
the total energy isE520.185~this value includes the effec
of a softening parameter in the Newtonian potential on
total energy!. Therefore, according to relation~2!, these sys-
tems should evolve toward stable isothermal sphere confi
rations.v ir will take this initial value~corresponding to a
virial ratio of 0.69! for all the runs studied here, except fo
some of those in Sec. VII, where we vary the energy
changing the virial ratio, in an attempt to examine the val
ity of Eq. ~2!.

To quantify the departure from thermal equilibrium, w
either divide the region wherer<r 010.1 into ten cells—
with the central cell enclosing a radius which is twice t
thickness of the surrounding shells—and calculate the tr
of the velocity dispersion tensor at timet s t in each of these
cells. Or, alternatively, we divide the particles into te
groups depending on their distance from the center. Thus
first set would contain theN/10 particles closest to the origin
the second set the followingN/10 particles as one move
outwards, and so on. The second method has the advan
that the sets have equal numbers of particles, while the
procedure has~except for the inner cell! fixed spatial resolu-
tion and therefore ensures that there are no large velo
gradients within the individual cells. In both cases we calc
late the rms dispersion of the trace of thevelocitydispersion
tensor from the relation
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sd5

A 1

10(l 51

10

~s t
l2s̄ t!

2

s̄ t

, ~7!

where a bar denotes an average over the cells. Usually
value of sd using the two different methods of binning th
data agreed reasonably well~within 10% and 20%!. In what
follows when we speak about the ‘‘dispersion’’ or aboutsd ,
we will usually mean the average ofsd calculated using the
two different binning procedures described above.

IV. APPROACH TO THERMAL EQUILIBRIUM

In this section we describe the evolution towards therm
equilibrium of systems consisting of 2500 equal mass p
ticles starting from some of the initial conditions described
Sec. III. Our object is to examine the existence of sta
N-body isothermal spheres when simple thermodynam
theory predicts their existence, and to study the time scale
achieving such equilibria when they exist. The choice of
number of particles was a compromise between the diver
requirements of studying systems in which the relaxat
times toward dynamical and thermal equilibrium should
significantly different~at least according to standard rela
ation theory!, and the large computing resources needed
direct summation codes for largeN.

A. Case when an intermediate dynamical
equilibrium is reached

Figure 1 shows the evolution ofsd for a system starting
with isotropic initial velocities decreasing exponentially wi
radius@according to Eq.~5!#. One can see thatsd decreases
monotonically ~give or take random fluctuations! but only
over many crossing times, and reaches a value of 10% o
over a time scale comparable to the two body relaxation t
of standard relaxation theory. According to that theory,
half mass relaxation time is given by@15#

t rh5
0.1432500

ln~2500g l !
3r 3/2. ~8!

After the first few crossing times, during which the syste
moves away from the spatially homogeneous initial distrib
tion and reaches its slowly evolving dynamical equilibriu
state, the half mass radius settles down to a value of a
0.65. Formula~8! therefore predicts a relaxation time scale
the range between about 36 and 45 crossing times, dep
ing on whether one uses the valueg l50.4 of Farouki and
Salpeter@23# or g l50.11 of Giersz and Heggie@21#. Look-
ing at the plot in Fig. 1, one can see that during this ti
interval there is a turnoff in thesd time series, so that the
decrease in its value with time is much slower. What h
pens is that, beyondt5t rh , the velocity gradient in the cen
tral area is, for all practical purposes, smoothed out. T
remaining error is due to a slight gradient in the outer regi
~which is also eventually smoothed out, but on a longer ti
scale of about 20 additional crossing times! @43#.

Thus it would appear that this system evolves toward
final equilibrium on the thermal time scale, and that this
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adequately described by standard two body relaxa
theory. As mentioned in Sec. I, this theory may be adequ
in describing energy relaxation~which is presumably the
main mechanism acting here!, even though the dynamica
picture it is based on may be rendered inaccurate by
chaotic nature ofN-body trajectories. Nevertheless, it ha
been suggested@29# that the exponential divergence of pha
space trajectories accompanying such motionitself induces a
relaxation time scale—which could be different from th
standard two body time since it is obtained from entire
different considerations—by estimating the time scale
smoothing out~or otherwise radically modifying! the phase
space density distribution~‘‘mixing’’ !, as suggested by th
ergodic interpretation of statistical mechanics@44,45#. How-
ever, the exponentiation time scale in gravitationalN-body
systems is found to be of the order of a dynamical tim
@27,28,11#, so if it did directly correspond to the evolutio
toward the thermal equilibrium state, one would expect su
a state to be reached within an accuracy of a few perc
after a few crossing times„See Eq.~29! in Ref. @19#…. The
fact that this is obviously not the case has led some inve
gators to conclude that the exponential divergence ofN-body
trajectories has nothing to do with their relaxation@27#, or
that it is more likely toonly affect the time scale for achiev
ing dynamical equilibrium @46#. For the system just de
scribed, this corresponds to the time scale for reaching
slowly

FIG. 1. Time~in units oftc) evolution of the relative dispersion
of the trace of the velocity dispersion tensor for a system star
from homogeneous density and isotropic velocity distribution
creasing with radius according to Eq.~5! with p51.
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evolving state which is achieved whensd has gone down
from an initial value of 0.47 to a value to about 0.3. Th
happens during the first few crossing times~Fig. 1!.

The above conundrum may apparently be resolved by
ing that, for large-N systems in dynamical equilibrium, th
~mixing! time scale for obtaining an equilibrium phase spa
density distribution is not simply a few exponentiation tim
scales, but may instead be given by@11#

t r52A3 ln~1/d!TANte , ~9!

whered is the linear phase space resolution over which
eraged ~coarse grained! distribution functions should no
evolve after a time of ordert r . We calculated the exponen
tiation time scalete for the systems studied here by using t
Ricci curvature method@48,19,11#. It was found to be abou
0.4 crossing times. The kinetic energy is alsoT;0.4. Thus,
for a resolution of, say, 10%, the time scale given by Eq.~9!
is ;67 crossing times, which is compatible with the resu
described here. Thus it will be necessary to examine
variation oft r with ~sufficiently large! N to see if the above
formula has any validity in determining the evolution towa
equilibrium, or whether the standard theory holds. The
sults of such simulations are currently being analyzed@49#.

B. Case when the local dynamical equilibrium is close
to the thermal equilibrium state

The situation was found to be very different for the sy
tem starting with a temperature inversion@i.e., with p521
in Eq. ~5!#. In this case, the long lived steady state arrived
on a time scale comparable to the exponentiation time s
is the thermal equilibrium state. As can be seen from Fig
this state is reached in essentially less than a crossing t
After that,sd deviates from zero by only a few percent. Th
simply corresponds to the particle noise. It is to be stres
that here, as in the case when the initial velocities decrea
with the radius, the virial ratio remained nearly consta
throughout the evolution. The density distribution and p
rameters that sensitively depend on it~like the potential en-
ergy! changed only slowly, with a rate comparable to that
the slowly evolving system described in Sec. IV A. We co
clude, therefore, that this equilibrium state was not reac
through the conditions normally associated with violent
laxation @2#. It also could not have been reached throu
standard two body relaxation, since this process takes p
on the much longer time scale of Fig. 1.

It has been argued@11# that the exponential divergence o
trajectories of gravitational systems in dynamical equil
rium mainly serves to smooth out the (6N) phase space den
sity distribution on subspaces compatible with the dynam
equilibrium, and causes only slow diffusion away from th
state. Thus while Eq.~9! gives the relaxation time scale for
system where the phase space divergence of trajectori
such as to maintain a given dynamical equilibrium—i.e.,
covering different configurations of a slowly evolvin
equilibrium—if such an equilibrium is not found, the dive
gence can take place at arbitrary directions in the ph
space. Because of the exponential divergence normal to
phase space motion, a dynamical equilibrium with smo
macroscopic density and velocity distribution may
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quickly attained even if the conditions for violent relaxatio
~which require large density fluctuations and far from eq
librium evolution! are not satisfied. Once a dynamical equ
librium is found, the geometry of the configuration spa
must behave in such a way thatglobally the exponential
divergence is effectivelyalong the motion~although locally
it must be normal!. Only the small scale fluctuations awa
from the equilibrium due to the discreteness noise mod
this. However, evolutionary time scale related to these
much larger@50#.

It is worth noting here that behavior similar to what h
been observed here occurs for one-dimensional gravitati
systems. In this case, too, systems prepared near stabl
namic equilibria gradually approach the thermal equilibriu
distribution due to collisional relaxation@12,51#, while those
initialized from other configurations rapidly relax to a sta
very close to thermal equilibrium@52#.

C. Invariance of the final thermal equilibrium state

The final equilibrium state should, by definition, be i
variant under the effect of gravitational interactions betwe
particles, and, therefore, if it is thermodynamically stab
one does not expect it to evolve@47#. As can be seen from
Fig. 2, this is actually the case. After the initial relaxatio
phase, during whichsd drops from its initial value~of about

FIG. 2. Time~in units oftc) evolution of the relative dispersion
of the trace of the velocity dispersion tensor for a system star
from homogeneous density, and an isotropic velocity distribut
increasing with radius according to Eq.~5! with p521.
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0.32) to an average value of about 5%~consistent with fluc-
tuations arising from the particle noise!, the value ofsd
hardly evolves at all.

Further evidence that this final state is long lived, and t
no gravothermal catastrophe occurs, can be obtained
looking at the evolution of the particle number in the cent
spatial cells of the two systems we considered. This is sho
in Fig. 3, after an initial increase as the system settles tow
the isothermal configuration~starting from the homogeneou
density distribution!, the particle number in the central ce
evolves only slowly, and then only in a limited way whic
does not signal any gravothermal collapse, but instead
evolution toward a more detailed equilibrium. Thus, wh
evolution toward the equilibrium distribution in velocit
space is fast, evolution in configuration space is relativ
slow. This again illustrates the multiple time scales pres
in gravitational systems. For the system starting from
initial state where the velocities decrease outwards, the
tral density ceases to evolve significantly after about
crossing times.

For every set of numbersM , E, and R, there exist a
unique stable Lane-Embden isothermal sphere configura
~cf. Fig. 8-1 of Ref. @1#!. In our runs, M51 and E5
20.185. Since very few particles~usually not more than ten!
are present beyondr 2r 050.2, we take this to be the bound
ary valueR51.2. In this case, the central density of th

FIG. 3. The evolution of the number of particles in the cent
cell (r 50.23r 0) as a function of the~crossing! time, in runs cor-
responding to the plots in Figs. 1~top! and 2.
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unique isothermal sphere is given by@1#

r05
3s

4pGrc
2

, ~10!

where, in the units used in this paper,G51. For the above
value of the total energy andv ir 51.4, the velocity disper-
sion s50.186. Herer c is the core radius of the system
~within which the density is roughly constant!. For the above
values of the parametersr c;0.3R ~this, in fact, can be in-
ferred from Table 4-1 and Fig. 8-1 of Ref.@1#!. One can then
deduce that insider<0.2 there will exist about a hundre
particles of mass 1/2500. This is indeed approximately
number of particles found in the central cell~that is, for r
<0.2) at the end of our simulations, which suggests that
resulting end states are indeed thermal equilibria.

D. Approach to equilibrium in anisotropic systems

To conclude this section, we finally note that the evo
tion of sd for the system starting with anisotropic velocitie
@prescribed according to Eq.~6!# turns out to be intermediate
between the two cases described above. The dispersion
creases within a couple of dynamical times to a value
about 12%, after that the system continues to evolve t
more precise thermal equilibrium state but in a less ra
manner, taking about 65 crossing times for the dispersio
hover around an averagesd;5%. The initial anisotropy is,
however, washed away within a time scale of 10–20 cro
ing times. This a prelude of things to come~Sec. V!, when it
will be confirmed that the relaxation of velocity anisotropi
appears to be much faster than that of the energies.

V. RELAXATION OF VELOCITY ANISOTROPIES

Energy relaxation is one of the effects produced by d
creteness noise inN-body systems, but there are others. A
important one is the relaxation of initially anisotropic veloc
ties. This, in a spherical system, will correspond to angu
momentum relaxation. As mentioned in Sec. I, it is not e
dent that the energy relaxation time scale, which should c
respond to the long relaxation time scale of Sec. IV, is
only time scale of interest when examining effects induc
by the discreteness ofN-body systems. It is important, there
fore, to check how other quantities, which may be more
rectly related to the detailed particle trajectories, tend tow
equilibrium values.

It was seen near the end of Sec. IV that the relaxation
velocity anisotropies can be much faster than the ther
~energy relaxation! time scale when the anisotropy is initiall
mild. In this section we study the evolution of velocity di
persions for systems where these are initially strongly an
tropic. To do this, we simply start our system with they and
z velocities set to zero. Thex velocities, which do not vary
with radius, are scaled in such a way as to keep the s
virial ratio as before. The system starts from a homogene
density and will therefore have the same energy as the o
discussed in previous sections. This configuration is ob
ously very far from dynamical equilibrium and our syste
‘‘violently relaxes,’’ with the virial ratio oscillating wildly
for many dynamical times. It settles to a value of abo

l
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0.73 (v ir 51.46) after roughly ten crossing times; this w
therefore be our zero point in calculating the relaxation tim

After the ten initial crossing times, the trace of the velo
ity dispersion tensor does not vary significantly with rad
(sd;6% almost independent ofr ), and in this sense the
system is isothermal. Moreover, this is mostly true in ea
directionx, y, andz independently. We can therefore aver
age our anisotropy measure over all radii to obtain less n
data. For easy comparison with energy relaxation, for
purpose we will use the same formula@Eq. ~7!# as before,
replacing the trace of the dispersion tensor in each radial
(s t

l) with the sum of the velocity dispersions over all cells
the x, y, andz directions. The number 10 is then replac
by 3, ands̄ is taken as the average ofsx , sy , andsz .

The results are shown in Fig. 4. After the initial ‘‘violen
evolution’’ of the first ten crossing times, following whic
the dispersion settles to a value of;0.32, it starts decreasin
abruptly ~almost linearly!, reaching the equilibrium~isotro-
pic! value after a total of;40 crossing times. This mean
that theeffectiverelaxation time~after achieving dynamica
equilibrium! toward isotropic velocities is about 30 crossin
times. This is significantly smaller than the time required
complete energy relaxation~about a quarter of that time!.
Thus it would appear that, at least for the case of clo
systems~and for the initial conditions examined here and
Sec. IV!, relaxation of initial anisotropies seem to bemuch
faster than energy relaxation.

However, three obvious and related questions will have
be addressed before the above conclusion is credible~i!
Does the system become triaxial during its evolution, and
so, can much of the relaxation be due an abundance of
otic orbits in the mean field?~ii ! If the system is not spheri
cal during its evolution, what is the effect of the spheric
enclosure on the relaxation of such a system?~iii ! Are the
density distribution in the system studied in this section, a
the ones for which energy relaxation was examined, sim
~this is important, since the relaxation is expected to dep
on the local density!?

To answer the first question, we have calculated the
tential energy tensor@1# during the evolution. From this, we
infer the axis ratios~assuming an ellipsoidal density distr

FIG. 4. Relaxation of initial velocity anisotropies. The system
started with zeroy andz velocities, and achieves a quasisteady st
after ;10tc . Time is measured in units of the crossing timetc .
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bution with constant axis ratio!. The answer is yes; as ma
be expected, a system starting from such initial condition
not spherical during its early evolution. However, it is on
mildly triaxial at ten crossing times~with the two longest
density axes having ratiosa/b50.88, which means still
larger equipotential axis ratios!, and is almost completely
axisymmetric (a/b50.96) after 20 crossing times. Sinc
such mild triaxialities are not likely to cause a rapid evo
tion ~without strong central mass concentration@54#!, and
since the evolution does not slow down after the asymme
is almost completely lost~at ;30 crossing times!, and the
departure from sphericity is very small, we conclude th
such mean field evolution would not appear to play a cen
part in the relaxation process.

One may suspect that the presence of an artificial sph
cal box surrounding an asymmetric system may play a r
in its evolution toward a spherical shape, which may be
companied by velocity relaxation toward isotropy. Howev
this does not appear to be the case here: since the w
process of evolution toward isotropy takes place in a fract
of the energy relaxation time, one expects most particle
conserve their energy and be confined away from the sph
cal enclosure~by their zero velocity surfaces!. In this case,
particles in the outer areas would be the most affected,
would then ‘‘communicate’’ the disturbance felt to the inn
areas. It follows that one would expect the evolution towa
isotropy to take place from outside in—i.e., the outer regio
become more isotropic before the inner ones. However,
was found not to be the case; if anything, it was the inn
areas which evolved slightly faster~presumably due to thei
higher densities!.

In principle, by virtue of the uniqueness of isotherm
spheres for a given value of the parameterm, the density
distribution of all final equilibrium configurations with th
same total energy, radius, and mass should be the s
However, we have allowed for our boundary to be elas
~thus R is not completely fixed!, and the energy in our
N-body simulations is not exactly conserved. Therefore,
density profiles may vary slightly from one model to anoth
In particular, one expects the system studied in this sectio
be more centrally concentrated due to its initial violent
laxation @55#. This indeed turns out to be the case: t
present system is more centrally concentrated. However,
only significantly so in the innermost cell or two. Beyond th
fifth cell the reverse is actually true. We can again appea
the uniformity of the relaxation toward isotropy at all rad
~including the mid regions where the density in both syste
is similar! to suggest that the increased central density is
an important effect.

In addition, all the above problems do not occur for
system with mild initial velocity anisotropies and gradien
~discussed at the end of Sec. IV!. This configuration stays
almost spherical during the evolution, thus the relaxation
ward isotropy means a relaxation in angular moment
~which is conserved by our boundary force law!. This takes
placeconcurrentlywith the relaxation of a thermal gradien
~so that there is no question of different density distributio
affecting the relaxation rate!. Thus it appears that the effec
of relaxation toward isotropy being faster than energy rel
ation is real. However, it is still left to future, more precis
simulations with more controlled conditions, and explorati
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of the parameter spaces and variation of particle number
confirm this potentially important result.

The idea that relaxation of velocities toward a Maxwelli
~which is what happened here when an isotropic state
reached! may be faster than the process of energy relaxa
is actually quite old@56,57#. In their study, Prigogine and
Severne used a kinetic formulation that avoided the artifi
cutoff introduced to eliminate the divergence in the Coulo
logarithm. They found that relaxation toward a Maxwellia
is ; ln N times faster than energy relaxation. This is comp
ible with what is found here. Moreover, their analysis a
suggested the oscillations around the equilibrium shown
the longer time evolution of the time series in Fig. 4.

VI. EVOLUTION OF MULTIMASS SYSTEMS

The main difference between a single mass system
one consisting of particles with different masses is that
the latter case, equipartition of energy will cause heav
mass particles to spiral toward the center of the system
reside there. General thermodynamical considerations s
that once the total mass, energy, and radius of an isothe
sphere are fixed, there corresponds only one configura
which is stable, and this has a unique value for a given r
of the density at the center and at the boundary~cf. Ref. @1#,
Fig. 8-1!. One therefore expects that a perturbation wh
conservesm @cf. Eq. ~2!#, but changes the ratio of central t
boundary densities, will necessarily cause a system to m
away from this unique thermal equilibrium configuration.
the system cannot move back~by restoring the initial density
ratio!, the equilibrium is unstable. This is of course precis
the situation here, where there is a mechanism that acts s
to cause high mass particles to spiral to the center, leavinm
unchanged. Since this process is due to equipartition of
ergy between particles, it is statistically irreversible. Gur
dyan, Kocharyan, and Matinyan@58# examined the evolution
of the transition from the case when a thermal equilibriu
existed and the case when it did not exist. The bifurcat
between these cases was found to depend on the existen
a central mass. In particular, it was found that as one
creased the central~point! mass, the value ofm required to
achieve a stable isothermal thermodynamic equilibrium
came significantly larger. That is, the aforementioned cu
in Ref. @1# shifted upwards. This means that, other para
eters staying constant, one has to continually increase
system’s energy in order to maintain thermal equilibrium
the central density is increased.

Thus one expects the increase in the central density
time during the evolution of isolated multimass systems
lead these in the direction of gravothermal collapse. Figur
showssd for models with velocities scaled according to E
~5!, and where the mass distributions follow a Salpeter m
function @59# with the highest mass particle being ten tim
more massive than the lightest particle. As can be seen,
ther of the models tends toward a thermal equilibrium.

It is found that, by the end of the run, the average m
per particle inside the central cell is about twice the origi
value~corresponding to a sample with a random mass dis
bution!. Also, due to the core contraction, not only is th
average mass per particle in the central region increa
with time, but also the total number of particles of any ma
to
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~compare Figs. 6 and 3!. This process was found to be muc
faster in the system with initial temperature inversion
which tended fastest toward equilibrium in the equal m
case. In fact, for that system, the number of central partic
increases to the point where a large number of tight bina
form, changing the effective specific heat of the system a
causing the central density to eventually decrease~the core
re-expands!. The tightening of these binaries causes nume
cal difficulties and the simulation had to be stopped~since
theNBODY2 code is not designed to deal with such situatio
@37#!. The main reason the evolution is faster for the ca
when thermal equilibrium is rapidly reached is probably b
cause this equilibrium is more centrally condensed than
intermediate dynamical equilibrium states the therma
evolving system passes through. The higher density me
that the accumulation of heavy mass particles happens
faster rate, which in turn increases the density and velo
gradients, and so on.

It is important to note here that, although the concent
tion of the heavier mass particles toward the center is du
those losing kinetic energy in gravitational encounters w
lower mass ones, true energy equipartition is never achie
This is because a stationary thermal equilibrium is ne
reached. Instead, because the system suffers a gravothe

FIG. 5. Evolution of the relative dispersion of the trace of t
kinetic energy tensor of the multimass systems of correspondin
Figs. 1~top! and 2 as a function of the crossing time. Top: syste
started with velocities decreasing with radius. Bottom: syst
started with temperature inversion.
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catastrophe, it continually evolves toward more inhomo
neous distributions~in velocity and configuration spaces!,
with the kinetic energy of particles continually varying. Th
total kinetic energy increases as the core contracts and
virial ratio increases; if anything, the variations in the kine
energies of the particles are enhanced. This is in contra
the one-dimensional case~which does not display unstabl
thermal properties!, where equipartition can be achieve
@53#.

The above results suggest that there are, in principle,
tistically irreversible effects that can change the density d
tribution of a given system away from that of the stab
isothermal solution compatible with its radius, total ener
and mass. This in turn suggests that condition~2! is only a
necessary condition for a system to evolve to thermal e
librium. It has been suggested@9# that the aforementioned
condition guarantees only that an isothermal sphere is alocal
free energy minimum. It then simply happens that the
more concentrated states are dynamically inaccessible~or at
least have a low probability of being reached! from certain
initial configurations. This is obviously the case for the eq
mass systems discussed in Sec. V. However, there coul
different configurations of equal mass systems which do
evolve toward the thermal equilibrium state, even when i

FIG. 6. Evolution of the number of particles in the central cell
the multimass systems of Fig. 5 in terms of the crossing time. T
system started with velocities decreasing with radius. Bottom: s
tem started with temperature inversion.
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predicted to exist. This assertion will be tested and discus
further in Sec. VII.

It was observed that the process of increasing the ave
mass per particle and the total mass in the central are
effective over a time scale much smaller than the stand
two body relaxation time. This was especially so for syste
starting from initial conditions that, although in virial equ
librium, are far from dynamical equilibrium, so that a signi
cant change in the virial ratio occurs during the subsequ
evolution. We ran a simulation, for example, in which th
initial velocity distribution was given by Eq.~6! ~i.e., aniso-
tropic velocities with asymmetry increasing toward the o
side! but with the exponential factors54. During the first
two crossing times or so,v ir 52T/V, which starts from the
usual value of 1.38, fluctuates between values of 1.24
1.68. During this time the particle number in the central c
(r ,0.2r 0) rises from an initial value of 27 to about 400
After that, vir settles down to a value of about 1.54, whic
changes relatively slowly~to about 1.6 after;13 crossing
times!, and the number of central particles settles down
about 250. Figure 7 shows the average particle mass in
the sphere with radius equal to half of that of the cent
spatial cell (r ,0.1r 0) which is clearly seen to increase ov
a few crossing times. The mass per particle was found to
above average in all the inner cells and below average
yond the fifth cell. In these outer cells the average mas
;0.35 after a few dynamical times. We stress here that
was found to be true even for the very outer cells, where
the standard relaxation rate is relatively long.

One possible explanation for this remarkably fast rela
ation rate of high mass objects could be that the ‘‘test p
ticle’’ approach used to calculate two body relaxation tim
scales fails for sufficiently massive particles. This is beca
a heavy mass particle moving in a system may induce
lective effects, altering the density around it and chang
the interaction strength with neighboring particles~see Secs.
13 and 14 in part II of Ref.@2#!. This effect appears to be
amplified in systems evolving from dynamical equilibrium
It may be worth noting here that this type of anomalou

p:
s-

FIG. 7. Average mass per particle inside 0.1r 0 for a multimass
system where the virial ratio varies significantly during the evo
tion. The total mass of the systems is unity. Time is measure
units of the crossing timetc .
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rapid increase of high mass particles in violently relaxi
objects has previously been reported@60,22#.

VII. PHASE TRANSITION OF ENCLOSED EQUAL MASS
N-BODY SYSTEMS

We would now like to know whether the value of th
parameterm, at which the phase transition between syste
that end up as isothermal spheres and those that suff
gravothermal catastrophe takes place, is close to that g
by Eq.~2!, and if this will depend on the initial conditions. I
the units we employ,G5M51, and the boundary radius i
also approximately equal to unity, so that varyingm basi-
cally amounts to changing the total energy. If we stick
homogeneous initial spatial configurations, then this w
amount to varying the kinetic energy. We choose this
obtain virial ratios of 0.69, 0.6 0.5, 0.4, and 0.3. In additio
one run was started in virial equilibrium (T/Vi50.5) but
with the initial density varying as 1/r 2 instead of being ho-
mogeneous~this accordingly decreases the energy!.

We compute the average ofsd over the last 100 output
~these are produced during the last ten crossing times ou
a total of usually about 100!. Since here we are interested
the final state of the system and not the time it takes to
there, the number of particles used in the simulations is
very crucial. In fact, using fewer particles ensures that t
state is arrived at in a lower number of crossing times. T
one can be more confident that a final state has been rea
in 100 crossing times~say!, and use the CPU time saved
be able to examine a larger number of initial states. T
velocities were started with a temperature inversion, so
rapid evolution toward a thermal equilibrium state is e
pected when such a state exists~Sec. IV!.

The results, which are shown in Table I, suggest that
transition between systems that tend toward thermal equ
ria, and ones that do not, does indeed take place at a valu
m;20.33, in accordance with the results of Antonov@5#
and Lynden-Bell and Wood@4#. Thus these studies, whic
employed simple thermodynamical considerations applie
ideal gas spheres~and were confirmed by local stabilit
analysis in a statistical mechanical context@7,8#!, provide
accurate results concerning the stability ofN-body gravita-
tional systems starting from the initial conditions describ
above.

However, homogeneous spatial initial conditions are
viously, in a sense, closer to the density distributions of i

TABLE I. Values of the relative dispersion in the trace of th
velocity dispersion tensor averaged over the last ten crossing t
for 500 particle systems. Runs normally lasted for a total of 1
crossing times, except for the run with withE520.491 which was
terminated at 33.9 crossing times due to numerical difficulties

T/Vi E s̄d

0.69 -0.185 0.11
0.60 -0.238 0.11
0.50 -0.298 0.12
0.40 -0.357 0.16
0.30 -0.417 0.22
0.50 -0.491 0.50
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thermal spheres than to collapsed objects~in the sense tha
these will have to pass through the less concentrated for
state before reaching the latter!. It was argued@9# on the
basis of global minimization of the free energy, that, for re
gravitational systems, relation~2! only guaranteeslocal en-
tropy maxima, global maxima being collapsed states w
large temperature gradients. We have therefore examined
approach to equilibrium from spatial initial conditions whe
the density decreased according to a power law tha
steeper than the inverse square relation associated wit
isothermal sphere. It was found that for densities decrea
as steeply as;R22.7, the thermal equilibrium final state wa
recovered. For power laws steeper than that, however,
central concentration increased and the integration stop
~due to numerical difficulties associated with the fact that
NBODY2 code is not designed to deal with such situatio
@37#!. The details~e.g., whether the integration stopped aft
a few crossing times or went on for a while! depended on the
softening, and on whether the initial velocities increased
decreased with the radius. However, even with very la
softening;0.1r 0 and an initial temperature inversion, a sy
tem starting with density decreasing asR23 could not be
integrated beyond 84tc . It is interesting to note here that th
initial velocity distribution ~with its strong temperature in
version! was essentially conserved for all these tens of cro
ing times.

It may perhaps be necessary in the future to repeat th
simulations with anN-body routine that is better suited fo
integration of the more centrally concentrated structures
collapsed gravitational objects~e.g., routines involving two
body regularization! to be completely certain of the follow
ing conclusion. The current evidence, however, suggests
condition ~2! indeed only guarantees that thermal equil
rium states are local entropy maxima. These correspon
Lane-Embden isothermal spheres which are not true isot
mal equilibria~cf. Sec. I!. Systems starting from certain ini
tial conditions may still end up in collapsed states. The c
dition given in Ref.@9# for this to never happen~i.e., for
thermal equilibrium states to be global entropy maxima! is
much stricter~with the temperature in units ofkB51, m must
be of the order of the inverse of the softening parameter,
;1500, to prevent collapse!. The truly isothermal solutions
overlap with the Lane-Embden isothermal solutions in t
range ofm.

VIII. CONCLUSION

In this paper we have studied some aspects of the dyn
ics of closed gravitational systems by means of dir
N-body simulations. StableN-body isothermal spheres ar
convenient laboratories where long term~e.g., ergodic! prop-
erties ofN-body trajectories can be studied without the d
traction caused by the eventual evolution of glob
properties—which is inevitable in open systems. Up to n
this type of study has been conducted only in the case
one-dimensional systems. The existence of a final equ
rium state also means that the relaxation time is well defin
Such systems are therefore ideal for testing gravitational
laxation theory. This paper presented an exploratory st
where some questions concerning the circumstances u
which stableN-body gravitating isothermal spheres exis

es
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and the relaxation times for evolution toward or away fro
such states were discussed. The main findings are as foll

~1! It is confirmed that closed equal massN-body systems
that satisfied relation~2! could indeed evolve toward we
defined thermal equilibrium states, as expected from sim
dynamical and thermodynamic considerations applied to
tems with a perfect gas equation of state and from lo
stability theory@1,2,6,7#. However, it was found that system
starting from centrally concentrated initial states~e.g., with
density decreasing as the inverse cubed of the radius! did not
evolve toward thermal equilibrium even when the aforem
tioned relation was satisfied. This effect was predicted
Kiessling@9#, who, based on a statistical mechanical analy
which made used of the minimization of the free ener
suggested that a much more stringent relation than Eq.~2!
would have to be satisfied in practice for all states to te
toward isothermal sphere configurations. Unlessm is very
large~of the order of the inverse of the softening paramete!,
isothermal spheres are onlylocal entropy maxima and do no
truly represent isothermal solutions~Sec. I!. Whether a par-
ticular system will evolve as to end up as an isotherm
sphere will depend on its initial conditions. In particula
local stability of isothermal sphere configurations will gua
antee that some initial states will tend toward such equilib
when they exist—for example, states that are initially le
centrally concentrated than the thermal equilibrium confi
ration.

~2! The rate at which evolution toward thermal equilibr
proceeds depends a lot on the initial conditions. If the sys
starts sufficiently near adynamicalequilibrium state which
happens to be different from the true thermal equilibrium
will quickly ~within a crossing time or so! tend toward the
dynamical equilibrium. The subsequent thermal evolut
appears to proceed on a time scale compatible with s
two-body relaxation. If, on the other hand, a system sta
from a state from where the nearest dynamical equilibri
and the true thermal equilibrium are close~this was found to
be the case, for example, for systems which started f
spatially homogeneous states and with initial temperature
version!, it will tend toward this common equilibrium in a
crossing time or so. This can happen even if the conditi
for violent relaxation are not likely to be satisfied—for e
ample, when the system under consideration stays very c
to virial equilibrium throughout the evolution and is n
clumpy @2#.

~3! The relaxation of anisotropic velocity dispersions w
found to be 3–4 times faster than energy relaxation~which
presumably determines the evolution toward thermal equ
rium in the case when this evolution is slow!. One therefore
concludes that in gravitational systems, different quanti
may have different relaxation time scales. In particul
quantities that depend on the details of a given partic
trajectory are likely to evolve at a different rate than its e
ergy, which is a scalar integral of the motion@19#.

~4! We have also conducted simulations of multima
systems—other parameters being the same as in the c
sponding single mass runs. These systems did not ten
stable thermal equilibria, but instead underwent gravoth
mal catastrophe~collapse!. This appears to be triggered b
the statistically irreversible accumulation of heavy mass p
ticles in the central areas, which changes the ratio of cen
s.
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to boundary densities. Since, according to simple dynam
and thermodynamic arguments, given the values of the t
mass, energy, and radius, there exists a unique therm
namically stable isothermal sphere for a given value of
aforementioned density ratio, no such equilibria will be po
sible when central mass is irreversibly added while keep
other parameters fixed.

~5! The rate at which the average mass per particle
creased in the inner 10–20 % of the boundary radius w
remarkably fast. In particular, it was found that in a situati
when there was significant departure from virial equilibriu
~i.e., when violent relaxation may be at work!, mass segre-
gation is observed on surprisingly short time scales of a
crossing times~for systems of 2500 particles!. Such effects
have also been previously observed@22,60#.

It is hoped that this paper has demonstrated some use
numerical experimentation with closedN-body systems, and
has illustrated that the study of relaxation in gravitation
systems is not itself a closed subject, but is instead a rich
largely unexplored area with many potentially interesti
phenomena yet to be revealed. On the theoretical side
interesting finding is that stable long lived thermal equili
rium states can exist which arenot entropy maxima. This
means that the true entropy maxima~centrally concentrated
objects with large velocity gradients!, although compatible
with macroscopic constraints such as total energy and
mentum conservation, are not reached—at least not o
time scales comparable to the thermal relaxation times. T
of course brings into question the ergodicity ofN-body
gravitational systems~over the total energy-momentum su
spaces! and the applicability of the standard postulates
statistical mechanics to these systems, along with their s
dard dynamical interpretation.

Two applications to come out of this effort that are pa
ticularly relevant to the study of stellar dynamics are t
evaluation of the energy relaxation time in cases wher
definite thermal equilibrium existed, and the calculation
the relaxation time of initially anisotropic velocity distribu
tions. In the first case, the relaxation time was found to
compatible with that of classical two body theory. Howev
it was also compatible with a recent estimate@11#, derived
from the exponential divergence inN-body systems in dy-
namical equilibrium, in which the relaxation time scales
;AN. It is then important to check how the relaxation tim
toward thermal equilibrium states~which provides the only
situation whereas the relaxation time in a three-dimensio
gravitationalN-body system is well defined! scales withN.
Results from a study of this type are currently being a
lyzed @49#.

In the second case, we found that relaxation toward i
tropic velocity distribution is considerably faster than that
energy relaxation. If confirmed, this would be an importa
result, with astrophysical applications to the study of su
phenomena as the ellipticity distributions of globular clu
ters. Prigogine and Severne@56#, who predicted this effect on
the basis of a kinetic formulation of the problem whic
avoided the introduction of a long range cutoff used to elim
nate divergence in the Coulomb logarithm, estimated that
variation withN of the rate of randomization ‘‘of the kinetic
energy to that of the transformation@of the# potential energy
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into kinetic energy’’ ~thermal time scale of energy relax
ation! goes as; ln N. However Prigogine and Severne st
retained some of simplifying features reminiscent of t
original Chandrasekhar formulation of the relaxation tim
c

r

s

in
ne

th

t-
:

infinite medium~i.e., no mean field!, weak coupling approxi-
mation, two body encounters, etc. Obviously, then, a dir
estimate of the variation withN for the aforementioned ratio
is also useful.
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