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The evolution of closed gravitational systems is studied by meamstmddy simulations. This, as well as
being interesting in its own right, provides insight into the dynamical and statistical mechanical properties of
gravitational systems: the possibility of the existence of stable equilibrium states and the associated relaxation
time would provide an ideal situation where relaxation theory can be tested. Indeed, these states are found to
exist for single massN-body systems, and the condition for this is simply that obtained from elementary
thermodynamical considerations applied to self-gravitating ideal gas spheres. However, even when this con-
dition is satisfied, some initial states may not end as isothermal spheres. It is therefore only a necessary
condition. Simple considerations also predict that, for fixed total mass, energy, and radius, stable isothermal
spheres are unique. Therefore, statistically irreversible perturbations to the density profile, caused by the
accumulation of massive particles near the center of multimass systems, destroy these equilibria if the afore-
mentioned quantities are kept fixed. The time scale for this to happen was found to be remarkalgly felwort
dynamical times wheil=2500) in systems undergoing violent relaxation. The time taken to achieve thermal
equilibrium depended on the initial conditions and could be comparable to a dynamicdktisrewhen the
conditions for violent relaxation were not satisfiest the two body relaxation time. The relaxation time for
velocity anisotropies was intermediate between these two time scales, being long compared to the dynamical
time but much(about four timesshorter than the time scale of energy relaxation. This last result, along with
the observation of the anomalously rapid mass segregation in some situations, suggests that, in gravitational
systems, different quantities may relax at different rates, and that the th@woabody) relaxation time scale,
even if accurate for energy relaxation of single mass systems, may not be universal. This in turn indicates that
the issue of relaxation in gravitational systems is far from being a closed sUl3&663-651X98)10209-X]

PACS numbgs): 05.70.Ln, 98.10tz, 02.60-—x, 03.20:+i

I. INTRODUCTION AND MOTIVATION wherey is a constant which depends on the density distribu-
tion of the systemand is larger for centrally concentrated
The peculiarity of gravitational interactions compared toobjects. Decreasing the potential energy will therefore im-
those governing laboratory systems can be illustrated by thgly a decrease in radius or an increase in central concentra-
following example. An orbiting satellite on a circular path tion. If a situation arises where a gravitational system can, to
loses energyby dissipation sayand drops to anothdrlso  a first approximation, be considered to be composed of a
circulan orbit with a smaller radius. The result is that its centrally concentrated core in virial equilibrium which is
circular velocityincreases even though its total energy de- hotter than a surrounding shell, the core will lose energy to
creased. This situation is easily translated into the languag#e surrounding shell and contract, while getting still hotter.
of large N-body systems in virial equilibrium. In this case, If the surrounding halo cannot heat fast enough, we have a
the kinetic and potential energies are related By+3/=0,  runaway instability, with the system evolving toward states
which implies that the total enerdy= —T. Decreasing the that are less and less homogeneous in both physical and ve-
total energy will therefore be equivalent to increasing thelocity spaces[1,2]. This phenomenon has been termed a
kinetic energy[1-3]. That is, the system hasegative spe- ‘“gravothermal catastrophe” by Lynden-Bell and Wopdt.
cific heat—since taking energy away from it heats it up. If A system undergoing such evolution, instead of tending to-
one is able to apply this logic to subsystems of a gravitaward a most probable final equilibrium state, can increase its
tional configuration in dynamical equilibrium, one can seeBoltzmann entropy indefinitely—simply by evolving a
that “heat” will effectivelyflow from hotter regiongthose  denser core and a more diffuse h&lg.

having larger average random kinetic enerdg cooler Thermal equilibrium configurations do nevertheless exist
ones—which implies that any temperature gradient is enfor gravitational systems. For opégpatially unboungsys-
hanced instead of being erased. tems, however, these turn out to be infinite. In a closed

Any increase in the kinetic energy of a system in virial spherical system, the boundary has the effect of adding an
equilibrium is bound(by the virial relation to decrease its external pressure term to the virial equation. The kinetic and
potential energy. In a spherical system of misind radius  potential energies are then related by/'2= 1. If this ratio is
R, the potential energy is given by very large, the behavior will be similar to that of a normal

laboratory system—and a constant temperatal®os) spa-
5 tially homogeneous equilibrium configuration will exist. If,
Ve — yGM 1) on the other hand, the potential energy is comparable to the
R kinetic energy, then peculiar effects related to the nature of
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gravitational interactions will dominate. It turns out that the simulations, without the macroscopic time dependence nec-
precise criterion for avoiding gravothermal instability in an essarily characteristic of the evolution of open gravitational
ideal gassphere i{4-6] systems. This may, for example, be useful in studying the
stability of trajectories of particles iN-body systems, their
ergodic properties, the diffusion rates of their action vari-
ER . . . .
p=——>=-0.335. 2) ables, and the_p055|ble rglatlonshlp l_Jetv_veen the_se properties
(for more details concerning the motivations behind such an
exercise see the concluding section of Réfl]). So far this

Enclosed gas spheres for which E8) holds may reach has been done only for one-dimensiofabD) gravitational
constant temperature equilibria with a well definedsystemg12]. It is not clear, however, how the behavior of
asymptotic statistical distribution. These are often referred tahese systems, consisting of a series of infinite sheets, relates
as (Lane-Embden isothermal spheres, because their finalto that of generic three-dimensional gravitational ones. In
distribution functions obey the usual Maxwell-Boltzmann particular, the force between the “particles” in these sys-
statistics of an isothermal gas. It is easy to see that for sygems is constant most of the time, but discontinuous when
tems in virial equilibrium ERIGM?=—y/2. In the case they cross each other; thus much of the body of rigorous
when the density decreases with radiyssannot be smaller results concerning the stability of dynamical systems, which
than?. Almost all systems in virial equilibrium therefore do is evidently useful in understanding the properties mentioned
not tend toward thermal equilibrium states—since dynamicahbove, does not appiL3]. Nevertheless, we will find some
equilibria of self-gravitating are necessarily strongly inho-interesting parallels between the behavior of these systems
mogeneous, with density decreasing with radius. In such sysnd the three-dimensional softened systems described here.
tems the central core may behave almost as if it is an indeComparison between the behavior of the two types of sys-
pendent subsystem in virial equilibrium, and (tather weak tems may thus guide further exploration of relevant proper-
but important interaction with the outer regions will lead to ties of 1D system$which may be simulated more accurately
a gravothermal catastrophe. for much longer times

Maximum entropy solutions of the collisionless Boltz-  The existence of a well defined relaxation time provides a
mann equatior{CBE) which have constant velocity disper- clean test for the relaxation theory of gravitational systems,
sions also obey Maxwell-Boltzmann statistics and, by analand insight into the nature of the relaxation process. This is
ogy, are also referred to as isothermal spheres. Intuitivelyymportant for the following reasons. First, there is still much
therefore, one would expect conditi¢®) to hold for spheri- debate as to how a system actually achieves a reldyed
cal stellar systemfsl]. Indeed, docal stability analysis based namical equilibrium Violent relaxation, the original mecha-
on a detailed treatment of the statistical mechanics of gravinism suggested for this process, is still not very well under-
tating systems seems to confirm tHig,8]. However, the stood [2,14]. It is still not clear whether a dynamically
aforementioned solutions of the CBE are obtained by conrelaxed final state is necessarily related to this process, or
straining the energy, not the temperature. Therefore, strictlyvhether the conditions for violent relaxation did exist in the
speaking, they represent constant-energy solutions, rathearly history of most stellar systems. The second reason is
than isothermal solutions in the standard sense. related to the question as to under which conditiGhany)

By global minimization of free energy one can obtain classical “collisional” relaxation theory1,2,15-17 holds.
truly isothermal solution§9]. In this case, however, the con- Controversial since its original formulatidrd 8], due to its
ditions for the existence of stable isothermal equilibrium aredescription of discreteness effects as independent two body
found to be much stricter. For an unsoftenedfdtential, an  encounters added to the mean field motisomething that
isothermal gravitational system which obeys classical meeannot bea priori justified in a nonlinear systemit is nev-
chanics will contract to a point. For softened systdmih ertheless commonly accepted as valid. Although there seems
which we shall be concerned hgrether isothermal solu- to be some justification to its use in describing the energy
tions exist. Wheru is very large(of the order of the inverse relaxation of particles ilN-body gravitational systemd.9],
of the softening length these overlap with the Lane-Embden and indeed much of the limited numerical evideh2e—23
isothermal spheres. For smaller valueswothe latter only seems to point in that direction, it seems hardly justified that
represent local entropy maxima. Thus, as shown by the validity of this time scale be taken for grantéak is
Kiessling[9], even systems satisfying E(R) may undergo almost always done in research on dynamical astronomy
gravothermal catastrophe. In this case, Lane-Embden “isowithout strict tests, pending rigorous theoretical justifications
thermal spheres” no longer represent true isothermal equifor the approximations made in deriving[24]. Indeed, it is
libria. To distinguish them from the latter, such states will, innot uncommon to find in numerical simulations that signifi-
general, be referred to d@bermal equilibria (or isothermal cant effects arising from discreteness noise take place on a
spheres Other authors have doubted the very validity of thescale much shorter than the standard two body relaxation
use of entropy maximization or canonical ensemble statistitime [25].
cal mechanicgon which all of the above conclusions are ~ Whether it does predict the energy relaxation time cor-
based in systems with long range forc¢&0]. The validity  rectly or not, the dynamical picture upon which standard
of relation(2) will be one of the issues we will be examining relaxation theory is based appears to be flawed, since it im-
numerically in this paper. plicitly assumes that gravitation&l-body systems are inte-

The existence of a final equilibrium state provides an idegrable and remain so under perturbations due to discreteness.
alized situation, whereas the dynamics of gravitational sysThis is modeled aadditive stochastic noise. The final result
tems can be studied for long times by means of particles a simple linear superposition of two independent
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solutions—the regular motion in the mean field and that unciency and accuracy. While the aforementioned techniques
der the influence of the stochastic force. However, it is noware very powerfulthe CPU time spent in the force calcula-
well known[26—-2§ that largeN-body gravitational systems tions scales adN logN at the worst, they are not very
display sensitivity to changes in their initial conditions accurate—one does not expect that, in general, the particle-
which are characteristic of chaotic dynamical systems, angarticle interactions will be calculated to an accuracy much
that this appears to be related to their being systems withetter than few percent. This makes them unsuitable for
predominantly negative configuration space curvaturgyork in which high accuracy is required, or when the nature

[29,30,19,11,3—thus having qualitative properties Very of the motion under the influence of gravitational forces is

different from those of integrable systems. It is thereforejigelf the object of study.

plausible that quantities that depend on the details of the The NBODY2 code[37] used to run the simulations de-
N-body trajectories(as opposed to quantities like energy scribed in this paper is one of the many efficient routines

which is a scalar path mdepen_dent integral of mdtioTay devised by Sverre Aarseth, and which are kindly provided by
relax on time scales that are different from the standard rem upon request. It is a direct summation code which uses
laxation time[32]. This may affect important observable i,ndividual time ste.ps for each particle in the simulatjag]

guantities, like the degree anisotropy in a given system fo . .
example. In addition, there are situations when it is clear thaffmd speeds up the force calculation by using the Ahmad-

the relaxation phenomena involved are beyond the applica=°"en39] neighbor scheme which, in the spirit of tree tech-

bility of simple classical two body relaxation theory. Ex- Nidues, separates the force calculations for neighboring par-
amples of such effects include those arising from the motiorticles and those further off—albeit in a somewnhat different
of massive particles in aN-body systen{2], and the inter- manner than tree methods. These improvements take into
action of discreteness noise with the global mean field mode&ccount the very different natural times-(/\p, p being
of a system[33]. Theories concerning such effects are farthe local densityin a gravitational system, and the fact that,
less well established than standard two body relaxatiomt a given point, théregular force due to nearby neighbors
(whereas the approximations made, although not resting omaries much faster than theegular force due to particles
rigorous theoretical grounds, are at least familiar from thefurther off.
theory of stochastic processes and well formuld@4). The errors in the calculation@s measured by energy
This paper has the basic aim of testing, through directonservation are controlled by an accuracy parameter
N-body simulations, some of the theory concerning isotherwhich determines the size of the integration time steps.
mal spheres, and showing how conclusions of importantrhese errors are constant for valuesspbelow 0.01, and
physical interest—mainly concerning the dynamical relax-jzcrease as? for higher valueg40]. We have found that a
ation of gravitational systems—can_ be obtained from this,gjye of 7= 0.02 (controlling the irregular time stémave
type of study. Thus we show the existence of stablbody  reasonably accurate results while maintaining efficient run-
realizations of isothermal spheres for single mass systemging of the codeboth of these aspects depended on the type
and determine the characteristic time scales for achievings anclosure bounding our systems, as we will see below

this state(Sec. IV). We also examine the time scale of relax- the tolerance parameter for the regular time step was taken
ation towards isotropy for systems with initially anisotropic 4¢ Theg="0.04. The softening length was fixed gt= sk;.

velocity dispersion tensc(Sec._ \j. By simulating. multimass To perform any experiments on closed systems, we obvi-
systems where heavier particles tend to reside toward thgq}y have to find a practical numerical procedure for enclos-
center—thus_modlfylng_ the isothermal sphere density pr(_)fllqng them. There is of course more than one way of doing
—we check if, for a given total energy, mass, and radiusyis. For example, one can just reverse the radial component
such configurations have a unique density distributec.  f the velocities of particles that are found to be beyond a
VI). In the process, the time scale of mass segregation iertain radius. Alternatively, one can impose “periodic
evaluated. FinallySec. V1), we will check if the condition  poundary conditions,” a situation in which particles escap-
distinguishingN-body systems that collapse from ones thating from one side of a system reappear on the opposite side.
find a stable thermal equilibrium state is similar to that for ggip these conditions, however, destroy the smoothness of
the existence of a stable self-gravitating ideal gas spli&fe  the dynamical system under consideration—in the first case
(2)]. We start by describing the direct summation gravita-the force can become infinite, while, in the second, some of
tional N-body code used in this paper, and other technicalhe variables become discontinuous. It is upon the assump-
details like the generation of initial data and the units usedjon of smoothness that many of the rigorous results of dy-
(Secs. Il and 11]. namical systems stability theory and the conclusions drawn
from it are based13]. These may be important in under-
standing some properties of gravitational dynamics, since it
appears that large gravitational systems are close to smooth
The main computational load in the integration of a gravi-hyperbolic ones, and it has been suggested that this property
tationalN-body system lies in the calculation of the particle- may play a role in determining some of their dynamical char-
particle forces, which, when summed directly, take a timeacteristic§29,30,19,11,3[L
proportional to the square of the particle number to compute. In order to conserve the differentiability dfoftened
Many different techniques have been devised in order tdN-body gravitational dynamical systems, we have opted for
speed up the force calculatiorifor example “tree” tech- the following procedure. We surround the system by an
niques[35] and adaptive particle mesh methd®6]). As  “elastic shell,” in the sense that a particle venturing beyond
usual, there is always a tradeoff between computational effia given radiug =r, experiences a restoring force

Il. NUMERICAL METHOD
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F ——mK(r—r.2n-1f 3 evolution of systems starting from anisotropic initial condi-
res= —MK(r—ro)="-r, ® ; : : : :
tions with the anisotropy increasing toward the outside ac-

A . . . . cording to the prescription
wherer is the radial unit vector at the particle’s position, and g P P

m is its mass. This central force law ensures the conservation
of both the energy and angular momentum of individual
particles—an important property if one is studying relax- Vi=V,ge s, (6)
ational phenomena.

Although the choice of the constari{sandn is to a large
extent arbitraryK has to be chosen so that particles do notwherel =1 and 3 denotes the Cartesian coordinatesy,
venture too far beyond=r,. Therefore, for large excur- andz, respectively. The factas takes a value of=1 unless
sions, the force has to be strong. However, if the force risestherwise stated. In one of the rufBec. V), the system is
too steeply at small excursions beyang large errors in the  started with two of the velocity coordinatéer all particles
energies of the particles can res(@ts these gain or lose set to zero.
energy during their entries into and exits from therg In some of the runs it was important that our systems did
region when their velocities are largeshfter a few trials,  not start too far from virial equilibrium, so that violent relax-
values ofK=1300 andn=4 were adopted. This ensured ajjon is (presumably not effective. There is a well known
that, for the accuracy parameters adopteele above the  tqrmyla (Ref. [1], Eq. 8P-2 for the condition of virial equi-
total energy change over 100 crossing times was always 1€$8ium of a system on which external forces are applied.

than 1.5%, and that particles almost never ventured peyongnfortunately, however, when the contribution of the exter-
r—ro=0.2 and very rarely beyond—r,=0.1. The choice nal potential is included in the calculation of the virial ratio,

also ensured that the |ncllu3|on of the boundary force d!d NOf e quantity is highly fluctuatingdue to the large contribu-
slow down the computation too mudthe system of units . . X
tion from only a few particles which are beyond=r).

used is described belgw Systems starting from virial equilibrium including the

boundary force did not conserve that equilibrium. However,
lIl. INITIAL CONDITIONS AND RELATED PARAMETERS after looking at the long term evolution of the ratigr

Throughout this paper we use the units of Heggie and=21/V in systems started this way, it was found that, for
Mathieu [41], whereas the total mass and the gravitationaystems with initially homogeneous density, this quantity
constant are set to unity. Except for some of the runs in Se@ettled to a value betweerir =1.32 andvir =1.38. In ac-

VII, where the initial density decreases according to a powefual trials it was found that isotropic systems started from
law in the radius, we start our simulations from homoge-vir =1.38 and from homogeneous density states conserved
neous spatial initial conditions with the boundaryrg=1,  this quantity to high accuracfbetter than 3%)42]. In the
thus fixing the potential energy at abodit(give or take ef-  anisotropic case described by E§), vir was conserved to
fects due to particle noise and softeninghe total energy is better than 6% during the evolution.

then determined by the initial virial ratioT(V). If this is For all systems for which the initial value ofir =1.38,
equal to 0.5virial equilibrium in the absence of enclosiire  the total energy i€= —0.185(this value includes the effect
then themean crossing timés calculated fron{37] of a softening parameter in the Newtonian potential on the
total energy. Therefore, according to relatid@), these sys-
T =M%3(—2E)%? (4)  tems should evolve toward stable isothermal sphere configu-

rations.vir will take this initial value(corresponding to a

which amounts to two time units. If tHe/V=>0.5. the cross- Virial ratio of 0.69 for all the runs studied here, except for
ing time is shorter. However, considering that the crossing?®Me Of those in Sec. VI, where we vary the energy by
time is only defined as an order of magnitude quantity ancg:hanglng the virial ratio, in an attempt to examine the valid-
that our systems will usually have virial ratios not too differ- ity Of EQ. (2). o

ent from 0.5, we stick to this definition. To quantify the departure from thermal equilibrium, we

Systems were started from several initial velocity profiles &ither divide the region where<r,+0.1 into ten cells—

In the more frequently used distributions, the velocity vec-With the central cell enclosing a radius which is twice the
tors take random directions, with their magnitudes either dethickness of the surrounding shells—and calculate the trace

creasing or increasing with radius according to the exponerf the velocity dispersion tensor at tirheo in each of these
tial law cells. Or, alternatively, we divide the particles into ten

groups depending on their distance from the center. Thus the
first set would contain thBl/10 particles closest to the origin,
V=Vee ", () the second set the followinty/10 particles as one moves

outwards, and so on. The second method has the advantage
where the central velocity is fixed by the chosen virial ratiothat the sets have equal numbers of particles, while the first
and radial density distribution. The paramepeeither takes procedure hagexcept for the inner cellfixed spatial resolu-
avaluep=1, in which case the velocity decreases toward theion and therefore ensures that there are no large velocity
outside, orp= —1, for systems started with a “temperature gradients within the individual cells. In both cases we calcu-
inversion,” so that the velocity at the edge of the system wadate the rms dispersion of the trace of tedocitydispersion
e times the velocity at the center. We also examined thdensor from the relation
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value of oy using the two different methods of binning the
data agreed reasonably wélithin 10% and 20% In what

follows when we speak about the “dispersion” or abaott M MM‘W | )
o i M‘WW“’“WM’MMW
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where a bar denotes an average over the cells. Usually the s MMWWMM
0

we will usually mean the average of; calculated using the
two different binning procedures described above.

IV. APPROACH TO THERMAL EQUILIBRIUM ° 20 i & %0 100

IS}

TIME

In this section we describe the evolution towards thermal
equilibrium of systems consisting of 2500 equal mass par-
ticles starting from some of the initial conditions described in
Sec. lll. Our object is to examine the existence of stable
N-body isothermal spheres when simple thermodynamical
theory predicts their existence, and to study the time scale for
achieving such equilibria when they exist. The choice of the
number of particles was a compromise between the divergent
requirements of studying systems in which the relaxation
times toward dynamical and thermal equilibrium should be
significantly different(at least according to standard relax-
ation theory, and the large computing resources needed by =7
direct summation codes for lardée

0.4 0.5

DISPERSION
0.3

0.2

Q

A. Case when an intermediate dynamical TIME
equilibrium is reached
Figure 1 shows the evolution ef4 for a system starting FIG. 1. Time(in units of 7.) evolution of the relative dispersion

with isotropic initial velocities decreasing exponentially with of the trace of the velocity dispersion tensor for a system starting
radius[according to Eq(5)]. One can see thaty decreases from homogeneous density and isotropic velocity distribution de-
monotonically (give or take random fluctuationdut only ~ Creasing with radius according to E@) with p=1.

over many crossing times, and reaches a value of 10% or sgdequately described by standard two body relaxation

over a time scale comparable to the two body relaxation timeheory. As mentioned in Sec. |, this theory may be adequate
of standard relaxation theory. According to that theory, thein describing energy relaxatiofwhich is presumably the

half mass relaxation time is given §hg5] main mechanism acting hereeven though the dynamical
picture it is based on may be rendered inaccurate by the
0.14x 2500 chaotic nature ofN-body trajectories. Nevertheless, it has
trhzm Xr¥2, (8)  been suggestd@9] that the exponential divergence of phase

space trajectories accompanying such motiself induces a

Af he first f . . duri hich th " relaxation time scale—which could be different from the
ter the first few crossing times, during which the systemganqarq two body time since it is obtained from entirely

moves away from the spatially homogeneous initial distribu-ittarent considerations—by estimating the time scale for

tion and reaches its sIO\_NIy evolving dynamical equilibrium smoothing outor otherwise radically modifyingthe phase
state, the half mass radius settles down to a value of abouhace density distributiofi'mixing” ), as suggested by the
0.65. Formulg8) therefore predicts a relaxation time scale in ergodic interpretation of statistical mechanjdg,45. How-
the range between about 36 and 45 crossing times, depengyer, the exponentiation time scale in gravitatioNabody
ing on whether one uses the valge=0.4 of Farouki and systems is found to be of the order of a dynamical time
Salpete{23] or y,=0.11 of Giersz and Heggi1]. Look-  [27,28,1], so if it did directly correspond to the evolution
ing at the plot in Fig. 1, one can see that during this timetoward the thermal equilibrium state, one would expect such
interval there is a turnoff in thery time series, so that the a state to be reached within an accuracy of a few percent
decrease in its value with time is much slower. What hap-after a few crossing timeéSee Eq.(29) in Ref.[19]). The
pens is that, beyont=t,,,, the velocity gradient in the cen- fact that this is obviously not the case has led some investi-
tral area is, for all practical purposes, smoothed out. Thejators to conclude that the exponential divergendd-bbdy
remaining error is due to a slight gradient in the outer regionsrajectories has nothing to do with their relaxati&v], or
(which is also eventually smoothed out, but on a longer timehat it is more likely toonly affect the time scale for achiev-
scale of about 20 additional crossing timg43]. ing dynamical equilibrium [46]. For the system just de-
Thus it would appear that this system evolves toward thescribed, this corresponds to the time scale for reaching the
final equilibrium on the thermal time scale, and that this isslowly
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0.5

evolving state which is achieved whery has gone down
from an initial value of 0.47 to a value to about 0.3. This
happens during the first few crossing tim&sg. 1).

The above conundrum may apparently be resolved by not-
ing that, for largeN systems in dynamical equilibrium, the
(mixing) time scale for obtaining an equilibrium phase space
density distribution is not simply a few exponentiation time
scales, but may instead be given [tyi]

b
=]

DISPERSION

=23 In(1d)TYN7,, 9)

whered is the linear phase space resolution over which av-
eraged (coarse graineddistribution functions should not
evolve after a time of order, . We calculated the exponen- Tiue
tiation time scaler, for the systems studied here by using the
Ricci curvature methof8,19,1]. It was found to be about
0.4 crossing times. The kinetic energy is alke 0.4. Thus,

for a resolution of, say, 10%, the time scale given by 4.

is ~67 crossing times, which is compatible with the results
described here. Thus it will be necessary to examine the
variation of 7, with (sufficiently large N to see if the above
formula has any validity in determining the evolution toward
equilibrium, or whether the standard theory holds. The re-
sults of such simulations are currently being analyzed.

B. Case when the local dynamical equilibrium is close W‘W\M\WWWM’WWMWW’W”WWW{W MWMMW{‘M

to the thermal equilibrium state

0.2 0.25

015

DISPERSION

0.1

0.05

o L ( L

The situation was found to be very different for the sys- 0 2 “ 8 s 190
tem starting with a temperature inversifire., with p=—1 "
in Eq. (5)]. In this case, the long lived steady state arrived at
on a tlme Scale Comparable to the exponent|at|on t|me Scale FIG. 2. T|me(|n units OfTC) evolution of the relative diSperSion
is the thermal equilibrium state. As can be seen from Fig. oof the trace of the velocity dispersion_ tenso_r for a s_yste_m §tart_ing
this state is reached in essentially less than a crossing timgpm homogeneous density, and an isotropic velocity distribution
After that, o4 deviates from zero by only a few percent. This I"creasing with radius according to E@) with p=—1.
simply corresponds to the particle noise. It is to be stresseﬁ%

ickly attained even if the conditions for violent relaxation
hich require large density fluctuations and far from equi-
librium evolution are not satisfied. Once a dynamical equi-
librium is found, the geometry of the configuration space
must behave in such a way thgtobally the exponential
divergence is effectivelalong the motion(although locally

that here, as in the case when the initial velocities decreas
with the radius, the virial ratio remained nearly constant
throughout the evolution. The density distribution and pa-
rameters that sensitively depend orlike the potential en-
ergy) changed only slowly, with a rate comparable to that of
tr;edslovxély e\f/olvm% sys;.em deglpglped In Sec. IVA. We Cor?'i must be normal Only the small scale fluctuations away
clude, therefore, that this equilibrium state was not reacheg, , ,q equilibrium due to the discreteness noise modify
through the conditions normally associated with violent re-

. this. However, evolutionary time scale related to these is
laxation [2]. It also could not have been reached throughmuch large[50].

standard two body relaxation, since this process takes place It is worth noting here that behavior similar to what has

on the much longer time scale of Fig. 1. - been observed here occurs for one-dimensional gravitational
.lt has_ been argug[dl_] that the expor_1ent|al dlv_ergence_(_)f systems. In this case, too, systems prepared near stable dy-
trajector!es of gravitational systems in dynamical eqUIIIb'namic equilibria gradually approach the thermal equilibrium
fium ma[nly Serves to smooth out theP@ pha}se space den_— afistribution due to collisional relaxatidri.2,51], while those
Zgﬁicljilbsrtiﬁzzmgg dor(:asuusbessp?rzllleys sclgvmvp de};ﬁls(eiovxltgvf/z(;/ (fjr)gnn?Tr:Zt nitialized from other configurations rapidly relax to a state
state. Thus while Eq9) gives the relaxation time scale for a very close to thermal equilibriurfb2].
system where the phase space divergence of trajectories is
such as to maintain a given dynamical equilibrium—i.e., by
covering different configurations of a slowly evolving  The final equilibrium state should, by definition, be in-
equilibrium—if such an equilibrium is not found, the diver- variant under the effect of gravitational interactions between
gence can take place at arbitrary directions in the phasparticles, and, therefore, if it is thermodynamically stable,
space. Because of the exponential divergence normal to ttene does not expect it to evolyd7]. As can be seen from
phase space motion, a dynamical equilibrium with smooth-ig. 2, this is actually the case. After the initial relaxation
macroscopic density and velocity distribution may bephase, during whiclery drops from its initial valugof about

C. Invariance of the final thermal equilibrium state
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where, in the units used in this pap&=1. For the above
value of the total energy angir = 1.4, the velocity disper-
NWMWMWWWWMW sion 0=0.186. Herer. is the core radius of the system
W‘WW (within which the density is roughly constanEor the above
values of the parameters~0.3R (this, in fact, can be in-
' ferred from Table 4-1 and Fig. 8-1 of R¢i]). One can then
deduce that inside<0.2 there will exist about a hundred
o ‘ ‘ ‘ particles of mass 1/2500. This is indeed approximately the
TvE number of particles found in the central céhhat is, forr

=<0.2) at the end of our simulations, which suggests that the
resulting end states are indeed thermal equilibria.
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gr D. Approach to equilibrium in anisotropic systems

To conclude this section, we finally note that the evolu-
tion of o4 for the system starting with anisotropic velocities
[prescribed according to E¢6)] turns out to be intermediate

WM"‘” W’ between the two cases described above. The dispersion de-
‘ W WW w‘ l WMN\WW’JLQWMMWM creases within a couple of dynamical times to a value of
W “ WMMM‘ \ .M{M {MMW about 12%, after that the system continues to evolve to a
M}MWM’U 1 more precise thermal equilibrium state but in a less rapid
manner, taking about 65 crossing times for the dispersion to
hover around an average,~5%. The initial anisotropy is,
0 2 40 60 80 100 however, washed away within a time scale of 10—20 cross-
Tiue ing times. This a prelude of things to cortteec. \j, when it

will be confirmed that the relaxation of velocity anisotropies

FIG. 3. The evolution of the number of particles in the central gppears to be much faster than that of the energies.
cell (r=0.2xry) as a function of thécrossing time, in runs cor-

responding to the plots in Figs.(fop) and 2.
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V. RELAXATION OF VELOCITY ANISOTROPIES

0.32) to an average value of about 5%onsistent with fluc- Energy relaxation is one of the effects produced by dis-
tuations arising from the particle nojsethe value ofoy creteness noise iN-body systems, but there are others. An
hardly evolves at all. important one is the relaxation of initially anisotropic veloci-

Further evidence that this final state is long lived, and thaties. This, in a spherical system, will correspond to angular
no gravothermal catastrophe occurs, can be obtained hywomentum relaxation. As mentioned in Sec. |, it is not evi-
looking at the evolution of the particle number in the centraldent that the energy relaxation time scale, which should cor-
spatial cells of the two systems we considered. This is showrespond to the long relaxation time scale of Sec. IV, is the
in Fig. 3, after an initial increase as the system settles towardnly time scale of interest when examining effects induced
the isothermal configuratiofstarting from the homogeneous by the discreteness df-body systems. It is important, there-
density distributio, the particle number in the central cell fore, to check how other quantities, which may be more di-
evolves only slowly, and then only in a limited way which rectly related to the detailed particle trajectories, tend toward
does not signal any gravothermal collapse, but instead aequilibrium values.
evolution toward a more detailed equilibrium. Thus, while It was seen near the end of Sec. IV that the relaxation of
evolution toward the equilibrium distribution in velocity velocity anisotropies can be much faster than the thermal
space is fast, evolution in configuration space is relativelyenergy relaxationtime scale when the anisotropy is initially
slow. This again illustrates the multiple time scales presenmild. In this section we study the evolution of velocity dis-
in gravitational systems. For the system starting from thepersions for systems where these are initially strongly aniso-
initial state where the velocities decrease outwards, the cerropic. To do this, we simply start our system with thand
tral density ceases to evolve significantly after about 6Q velocities set to zero. The velocities, which do not vary
crossing times. with radius, are scaled in such a way as to keep the same

For every set of number®, E, and R, there exist a virial ratio as before. The system starts from a homogeneous
unique stable Lane-Embden isothermal sphere configuratiodensity and will therefore have the same energy as the ones
(cf. Fig. 8-1 of Ref.[1]). In our runs,M=1 and E= discussed in previous sections. This configuration is obvi-
—0.185. Since very few particldsisually not more than ten  ously very far from dynamical equilibrium and our system
are present beyond-r,=0.2, we take this to be the bound- “violently relaxes,” with the virial ratio oscillating wildly
ary valueR=1.2. In this case, the central density of this for many dynamical times. It settles to a value of about
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be expected, a system starting from such initial conditions is
not spherical during its early evolution. However, it is only
mildly triaxial at ten crossing time$with the two longest
density axes having ratioa/b=0.88, which means still
larger equipotential axis ratipsand is almost completely
axisymmetric &/b=0.96) after 20 crossing times. Since
such mild triaxialities are not likely to cause a rapid evolu-
tion (without strong central mass concentrati@4]), and
st ‘ | since the evolution does not slow down after the asymmetry
is almost completely lostat ~30 crossing times and the
departure from sphericity is very small, we conclude that
such mean field evolution would not appear to play a central
o4 = " = = part in the relaxation process.
TE One may suspect that the presence of an artificial spheri-
cal box surrounding an asymmetric system may play a role
FIG. 4. Relaxation of initial velocity anisotropies. The system is N its evolution toward a spherical shape, which may be ac-
started with zery andz velocities, and achieves a quasisteady statecompanied by velocity relaxation toward isotropy. However,
after ~107,. Time is measured in units of the crossing time this does not appear to be the case here: since the whole
. L ... process of evolution toward isotropy takes place in a fraction
0.73 (vir=1.46) after roughly ten crossing times; this will f the energy relaxation time, one expects most particles to
therefore be our zero point in ca_llculatlng the relaxation time cqserve their energy and be confined away from the spheri-
_ After the ten initial crossing times, the trace of the veloc- 4| enclosurgby their zero velocity surfacgsin this case,
ity dispersion tensor does not vary significantly with radiuspapiicles in the outer areas would be the most affected, and
(04~6% almost independent af), and in this sense the \yoyld then “communicate” the disturbance felt to the inner
system is isothermal. Moreover, this is mostly true in eachyreas |t follows that one would expect the evolution toward
directionx, y, andz independentlyWe can therefore aver- isotropy to take place from outside in—i.e., the outer regions
age our anisotropy measure over all radii to obtain less noisyecome more isotropic before the inner ones. However, this
data. For easy comparison with energy relaxation, for thigyas found not to be the case; if anything, it was the inner
purpose we will use the same formUlaq. (7)] as before,  areas which evolved slightly fastépresumably due to their
replacing the trace of the dispersion tensor in each radial CeHigher densities
(Ult) with the sum of the VEIOCity disperSionS over all cells in In princip|e, by virtue of the uniqueness of isothermal
the X, Y, indZ directions. The number 10 is then rep'acedspheres for a given value of the parameﬁer the density
by 3, ando is taken as the average of, oy, ando,. distribution of all final equilibrium configurations with the
The results are shown in Fig. 4. After the initial “violent same total energy, radius, and mass should be the same.
evolution” of the first ten crossing times, following which However, we have allowed for our boundary to be elastic
the dispersion settles to a value-60.32, it starts decreasing (thus R is not completely fixef] and the energy in our
abruptly (almost linearly, reaching the equilibriuntisotro-  N-body simulations is not exactly conserved. Therefore, the
pic) value after a total of~40 crossing times. This means density profiles may vary slightly from one model to another.
that theeffectiverelaxation time(after achieving dynamical In particular, one expects the system studied in this section to
equilibrium) toward isotropic velocities is about 30 crossing be more centrally concentrated due to its initial violent re-
times. This is significantly smaller than the time required forlaxation [55]. This indeed turns out to be the case: the
complete energy relaxatiofabout a quarter of that time present system is more centrally concentrated. However, it is
Thus it would appear that, at least for the case of closednly significantly so in the innermost cell or two. Beyond the
systemgand for the initial conditions examined here and infifth cell the reverse is actually true. We can again appeal to
Sec. IV), relaxation of initial anisotropies seem to bmich  the uniformity of the relaxation toward isotropy at all radii
fasterthan energy relaxation. (including the mid regions where the density in both systems
However, three obvious and related questions will have tas similar) to suggest that the increased central density is not
be addressed before the above conclusion is credible. an important effect.
Does the system become triaxial during its evolution, and, if In addition, all the above problems do not occur for a
s0, can much of the relaxation be due an abundance of chaystem with mild initial velocity anisotropies and gradients
otic orbits in the mean field@i) If the system is not spheri- (discussed at the end of Sec.)IVThis configuration stays
cal during its evolution, what is the effect of the sphericalalmost spherical during the evolution, thus the relaxation to-
enclosure on the relaxation of such a systd(iii? Are the  ward isotropy means a relaxation in angular momentum
density distribution in the system studied in this section, andwhich is conserved by our boundary force JaWhis takes
the ones for which energy relaxation was examined, similaplaceconcurrentlywith the relaxation of a thermal gradient
(this is important, since the relaxation is expected to depen¢so that there is no question of different density distributions
on the local density? affecting the relaxation rateThus it appears that the effect
To answer the first question, we have calculated the poef relaxation toward isotropy being faster than energy relax-
tential energy tensdrl] during the evolution. From this, we ation is real. However, it is still left to future, more precise,
infer the axis ratiogassuming an ellipsoidal density distri- simulations with more controlled conditions, and exploration

“ \“\”l ' bution with constant axis ratioThe answer is yes; as may
|
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of the parameter spaces and variation of particle numbers, to ; '
confirm this potentially important result.

The idea that relaxation of velocities toward a Maxwellian
(which is what happened here when an isotropic state was
reachedl may be faster than the process of energy relaxation
is actually quite old56,57. In their study, Prigogine and
Severne used a kinetic formulation that avoided the artificial
cutoff introduced to eliminate the divergence in the Coulomb
logarithm. They found that relaxation toward a Maxwellian
is ~In N times faster than energy relaxation. This is compat-
ible with what is found here. Moreover, their analysis also -
suggested the oscillations around the equilibrium shown by
the longer time evolution of the time series in Fig. 4.
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VI. EVOLUTION OF MULTIMASS SYSTEMS

0.5

The main difference between a single mass system and
one consisting of particles with different masses is that, in ﬂ\M
the latter case, equipartition of energy will cause heavier ‘ i‘(
mass patrticles to spiral toward the center of the system and
reside there. General thermodynamical considerations show:
that once the total mass, energy, and radius of an isothermalg |
sphere are fixed, there corresponds only one configuration%
which is stable, and this has a unique value for a given ratio
of the density at the center and at the boundafyRef.[1],

Fig. 8-1). One therefore expects that a perturbation which ‘;WW' ‘
conservesu [cf. Eq. (2)], but changes the ratio of central to i H‘
boundary densities, will necessarily cause a system to move
away from this unique thermal equilibrium configuration. If "o 20 40 60 a0 100

the system cannot move bagky restoring the initial density THE

ratio), the equilibrium is unstable. This is of course precisely

the situation here, where there is a mechanism that acts so asFIG. 5. Evolution of the relative dispersion of the trace of the
to cause high mass particles to spiral to the center, legving ki_netic energy tensor of the multimass systems qf corresponding to
unchanged. Since this process is due to equipartition of ed-9S- 1(top) and 2 as a function of the crossing time. Top: system
ergy between particles, it is statistically irreversible. Gurza-St2ed with velocities decreasing with radius. Bottom: system
dyan, Kocharyan, and MatinydB8] examined the evolution started with temperature inversion.

of the transition from the case when a thermal equilibrium

existed and the case when it did not exist. The bifurcationcompare Figs. 6 and)3This process was found to be much
between these cases was found to depend on the existencefadter in the system with initial temperature inversion—

a central mass. In particular, it was found that as one inwhich tended fastest toward equilibrium in the equal mass
creased the centrgpoint) mass, the value oft required to  case. In fact, for that system, the number of central particles
achieve a stable isothermal thermodynamic equilibrium beincreases to the point where a large number of tight binaries
came significantly larger. That is, the aforementioned curvdorm, changing the effective specific heat of the system and
in Ref. [1] shifted upwards. This means that, other param-<ausing the central density to eventually decre#se core
eters staying constant, one has to continually increase the-expands The tightening of these binaries causes numeri-
system’s energy in order to maintain thermal equilibrium ascal difficulties and the simulation had to be stopfsthce

the central density is increased. theNBODY2 code is not designed to deal with such situations

Thus one expects the increase in the central density witf37]). The main reason the evolution is faster for the case
time during the evolution of isolated multimass systems towhen thermal equilibrium is rapidly reached is probably be-
lead these in the direction of gravothermal collapse. Figure Bause this equilibrium is more centrally condensed than the
showsay for models with velocities scaled according to Eq. intermediate dynamical equilibrium states the thermally
(5), and where the mass distributions follow a Salpeter massvolving system passes through. The higher density means
function [59] with the highest mass particle being ten timesthat the accumulation of heavy mass particles happens at a
more massive than the lightest particle. As can be seen, neflaster rate, which in turn increases the density and velocity
ther of the models tends toward a thermal equilibrium. gradients, and so on.

It is found that, by the end of the run, the average mass It is important to note here that, although the concentra-
per particle inside the central cell is about twice the originaltion of the heavier mass particles toward the center is due to
value(corresponding to a sample with a random mass distrithose losing kinetic energy in gravitational encounters with
bution). Also, due to the core contraction, not only is the lower mass ones, true energy equipartition is never achieved.
average mass per particle in the central region increasinghis is because a stationary thermal equilibrium is never
with time, but also the total number of particles of any masseached. Instead, because the system suffers a gravothermal

0.4

03
=
=——
——
=
=
=
—

0.2
T




PRE 58 APPROACH TO EQUILIBRIUM INN-BODY ... 4161

250

150
6x107*
T

200
———
_—
—_—
==
h=—
[
—_—
==
——
=
=
=
——
—_—
8x10™*
T

NUMBER OF PARTICLES
AVERAGE MASS

100
T

——
=
—
=
=
=
=
T
2
I
==
4x107*

2x107*
T

50
Y
=
=
=
=

L L I
o] 20 40 60 80 100 ©
TIME

250

FIG. 7. Average mass per particle insider@.for a multimass

Mw WW‘N ] system where the virial ratio varies significantly during the evolu-
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tion. The total mass of the systems is unity. Time is measured in
units of the crossing time, .

150

] further in Sec. VILI.

It was observed that the process of increasing the average
mass per particle and the total mass in the central area is
effective over a time scale much smaller than the standard
two body relaxation time. This was especially so for systems

ol - - - n - starting from initial conditions that, although in virial equi-

Tve librium, are far from dynamical equilibrium, so that a signifi-
cant change in the virial ratio occurs during the subsequent

FIG. 6. Evolution of the number of particles in the central cell of €volution. We ran a simulation, for example, in which the
the multimass systems of Fig. 5 in terms of the crossing time. Topinitial velocity distribution was given by Ed6) (i.e., aniso-
system started with velocities decreasing with radius. Bottom: systropic velocities with asymmetry increasing toward the out-
tem started with temperature inversion. side but with the exponential factas=4. During the first
two crossing times or sajir =2T/V, which starts from the

catastrophe, it continually evolves toward more inhomoge_usual value of 1.38, fluctuates between values of 1.24 and

neous distributionsin velocity and configuration spades 1.68. Dunng this time the.pfa.rtlcle number in the central cell
with the kinetic energy of particles continually varying. The (r<0.2) rSes from an initial value of 27 to about 40.0'
) After that, vir settles down to a value of about 1.54, which

total kinetic energy increases as the core contracts and th% : .
- o o . - . .. changes relatively slowlyto about 1.6 after~13 crossing
virial ratio increases; if anything, the variations in the kinetic

. . o times, and the number of central particles settles down to
energies C.)f the par'ucles are enhanced. Th_|s IS In contrast t, ¢ o5, Figure 7 shows the average particle mass inside
the one-dimensional cadwhich does not display unstable o sphere with radius equal to half of that of the central

thermal propertigs where equipartition can be achieved gpatig) cell ¢ <0.1r,) which is clearly seen to increase over
[53]. a few crossing times. The mass per particle was found to be
The above results suggest that there are, in principle, Stagove average in all the inner cells and below average be-
tistically irreversible effects that can change the density disyond the fifth cell. In these outer cells the average mass is
tribution of a given system away from that of the stable (.35 after a few dynamical times. We stress here that this
isothermal solution compatible with its radius, total energy,was found to be true even for the very outer cells, where the
and mass. This in turn suggests that conditi@nis only a  the standard relaxation rate is relatively long.
necessary condition for a system to evolve to thermal equi- One possible explanation for this remarkably fast relax-
librium. It has been suggestd@] that the aforementioned ation rate of high mass objects could be that the “test par-
condition guarantees only that an isothermal spherddsal  ticle” approach used to calculate two body relaxation time
free energy minimum. It then simply happens that thesescales fails for sufficiently massive particles. This is because
more concentrated states are dynamically inacces&iblat a heavy mass particle moving in a system may induce col-
least have a low probability of being reachdtbm certain  lective effects, altering the density around it and changing
initial configurations. This is obviously the case for the equalthe interaction strength with neighboring particlsse Secs.
mass systems discussed in Sec. V. However, there could B8 and 14 in part Il of Ref[2]). This effect appears to be
different configurations of equal mass systems which do noamplified in systems evolving from dynamical equilibrium.
evolve toward the thermal equilibrium state, even when it isit may be worth noting here that this type of anomalously

WWHWW‘ predicted to exist. This assertion will be tested and discussed

1

NUMBER OF PARTICLES
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TABLE |. Values of the relative dispersion in the trace of the thermal spheres than to collapsed objdatsthe sense that
velocity dispersion tensor averaged over the last ten crossing timegiese will have to pass through the less concentrated former
for 500 particle systems. Runs normally lasted for a total of 100state before reaching the laftett was argued 9] on the
crossing times, except for the run with wilh=—0.491 which was  pasis of global minimization of the free energy, that, for real
terminated at 33.9 crossing times due to numerical difficulties gravitational systems, relatiof2) only guaranteeocal en-

— tropy maxima, global maxima being collapsed states with
TV, E o large temperature gradients. We have therefore examined the
approach to equilibrium from spatial initial conditions where
0.69 -0.185 0.11 . . .
the density decreased according to a power law that is

0.60 -0.238 0.11 . . . -
steeper than the inverse square relation associated with an
0.50 -0.298 0.12 . " .
0.40 0.357 0.16 isothermal sphere. It was found that for densities decreasing
0'30 0'417 0'22 as steeply as-R™ 2”7, the thermal equilibrium final state was
: - ' recovered. For power laws steeper than that, however, the
0.50 -0.491 0.50

central concentration increased and the integration stopped
(due to numerical difficulties associated with the fact that the
NBODY2 code is not designed to deal with such situations
[37]). The detailge.g., whether the integration stopped after
a few crossing times or went on for a whildepended on the
softening, and on whether the initial velocities increased or
VIl. PHASE TRANSITION OF ENCLOSED EQUAL MASS decreased with the radius. However, even with very large
N-BODY SYSTEMS softening~0.1r, and an initial temperature inversion, a sys-

We would now like to know whether the value of the tem starting with density decreasing Bs® could not be
parameten, at which the phase transition between systemdntegrated beyond &4 . Itis interesting to note here that the
that end up as isothermal spheres and those that sufferigitial velocity distribution (with its strong temperature in-
gravothermal catastrophe takes place, is close to that givefersion was essentially conserved for all these tens of cross-
by Eq.(2), and if this will depend on the initial conditions. In NG times. _
the units we employG=M =1, and the boundary radius is 't may perhaps be necessary in the future to repeat these
also approximately equal to unity, so that varyipgbasi- _S|mulat|_ons with arN-body routine that is better suited for
cally amounts to changing the total energy. If we stick tointegration of the more centrally concentrated structures of
homogeneous initial spatial configurations, then this willcollapsed gravitational objecte.g., routines involving two
amount to varying the kinetic energy. We choose this tgbody regularizationto be completely certain of the follow-
obtain virial ratios of 0.69, 0.6 0.5, 0.4, and 0.3. In addition,inNg conclusion. The current evidence, however, suggests that
one run was started in virial equilibriuniT(V;=0.5) but condition (2) indeed only guarantees that thermal equilib-
with the initial density varying as 7 instead of being ho- "um states are local entropy maxima. These correspond to
mogeneousthis accordingly decreases the energy Lane-Empdgn isothermal spheres wh|(_:h are not true |s_0t_her-

We compute the average of; over the last 100 outputs mal eqw_h_bna(cf. Sec. ). Systems starting from certain ini-
(these are produced during the last ten crossing times out &l conditions may still end up in collapsed states. The con-
a total of usually about 100Since here we are interested in dition given in Ref.[9] for this to never happexi.e., for
the final state of the system and not the time it takes to gefermal equilibrium states to be global entropy maxirisa
there, the number of particles used in the simulations is nofluch stricter(with the temperature in units @ =1, u must
very crucial. In fact, using fewer particles ensures that thid?€ of the order of the inverse of the softening parameter, i.e.,
state is arrived at in a lower number of crossing times. Thus™ 500, to prevent collapgeThe truly isothermal solutions
one can be more confident that a final state has been reach@yerlap with the Lane-Embden isothermal solutions in this
in 100 crossing timegsay), and use the CPU time saved to fange ofu.
be able to examine a larger number of initial states. The

rapid increase of high mass particles in violently relaxing
objects has previously been repor{&d,22.

velqcities were started with a temperat_u_re_inversion, SO that VIIl. CONCLUSION
rapid evolution toward a thermal equilibrium state is ex-
pected when such a state exisgec. IV). In this paper we have studied some aspects of the dynam-

The results, which are shown in Table I, suggest that thécs of closed gravitational systems by means of direct
transition between systems that tend toward thermal equilibN-body simulations. Stablé&l-body isothermal spheres are
ria, and ones that do not, does indeed take place at a value obnvenient laboratories where long tefeng., ergodigprop-
u~—0.33, in accordance with the results of Antonf®]  erties ofN-body trajectories can be studied without the dis-
and Lynden-Bell and Woof4]. Thus these studies, which traction caused by the eventual evolution of global
employed simple thermodynamical considerations applied tproperties—which is inevitable in open systems. Up to now
ideal gas spheregand were confirmed by local stability this type of study has been conducted only in the case of
analysis in a statistical mechanical cont¢Xt8]), provide one-dimensional systems. The existence of a final equilib-
accurate results concerning the stabilityMfbody gravita- rium state also means that the relaxation time is well defined.
tional systems starting from the initial conditions describedSuch systems are therefore ideal for testing gravitational re-
above. laxation theory. This paper presented an exploratory study

However, homogeneous spatial initial conditions are obwhere some questions concerning the circumstances under
viously, in a sense, closer to the density distributions of isowhich stableN-body gravitating isothermal spheres exist,
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and the relaxation times for evolution toward or away fromto boundary densities. Since, according to simple dynamical
such states were discussed. The main findings are as followand thermodynamic arguments, given the values of the total
(1) Itis confirmed that closed equal mdssbody systems mass, energy, and radius, there exists a unique thermody-
that satisfied relatiorf2) could indeed evolve toward well namically stable isothermal sphere for a given value of the
defined thermal equilibrium states, as expected from simplaforementioned density ratio, no such equilibria will be pos-
dynamical and thermodynamic considerations applied to syssible when central mass is irreversibly added while keeping
tems with a perfect gas equation of state and from locabther parameters fixed.
stability theory[1,2,6,7. However, it was found that systems  (5) The rate at which the average mass per particle in-
starting from centrally concentrated initial statesg., with  creased in the inner 10—20 % of the boundary radius was
density decreasing as the inverse cubed of the radidot  remarkably fast. In particular, it was found that in a situation
evolve toward thermal equilibrium even when the aforemenwhen there was significant departure from virial equilibrium
tioned relation was satisfied. This effect was predicted by(i.e., when violent relaxation may be at worknass segre-
Kiessling[9], who, based on a statistical mechanical analysigyation is observed on surprisingly short time scales of a few
which made used of the minimization of the free energy.crossing timegfor systems of 2500 particlesSuch effects
suggested that a much more stringent relation than(Bqg. have also been previously obsenje?,60.
would h_ave to be satisfied in practic_e for all states to tend |tis hoped that this paper has demonstrated some uses of
toward isothermal sphere configurations. Unlgsss very  nymerical experimentation with closéétbody systems, and
large (of the order of the inverse of the softening parameter 55 jjlustrated that the study of relaxation in gravitational

isothermal spheres are orlycal entropy maxima and do not o tams is not itself a closed subject, but is instead a rich and

truly represent |spthermal solutioSec. ). Whethef a par- argely unexplored area with many potentially interesting
ticular system will evolve as to end up as an isotherma

; AR " . henomena yet to be revealed. On the theoretical side, an
sphere will depend on its initial conditions. In particular,

local stability of isothermal sphere configurations will guar—IntereStIng finding is that stable long lived thermal equilib-

antee that some initial states will tend toward such equilibriarlum states can exist which areot entropy maxima. This

when they exist—for example, states that are initially lesgn€ans thf_ﬂ the true entr_opy ma_xir([zentrally concentrgted
objects with large velocity gradientsalthough compatible

centrally concentrated than the thermal equilibrium configu--" : y
ration. with macroscopic constraints such as total energy and mo-
(2) The rate at which evolution toward thermal equilibria Mentum conservation, are not reached—at least not over
proceeds depends a lot on the initial conditions. If the systerime scales comparable to the thermal relaxation times. This
starts sufficiently near dynamicalequilibrium state which of course brings into question the ergodicity Bfbody
happens to be different from the true thermal equilibrium, itgravitational systemgover the total energy-momentum sub-
will quickly (within a crossing time or 9otend toward the spaces and the applicability of the standard postulates of
dynamical equilibrium. The subsequent thermal evolutiorstatistical mechanics to these systems, along with their stan-
appears to proceed on a time scale compatible with slowlard dynamical interpretation.
two-body relaxation. If, on the other hand, a system starts Two applications to come out of this effort that are par-
from a state from where the nearest dynamical equilibriundicularly relevant to the study of stellar dynamics are the
and the true thermal equilibrium are clogkis was found to  €valuation of the energy relaxation time in cases where a
be the case, for example, for systems which started frorflefinite thermal equilibrium existed, and the calculation of
spatially homogeneous states and with initial temperature inthe relaxation time of initially anisotropic velocity distribu-
version, it will tend toward this common equilibrium in a tions. In the first case, the relaxation time was found to be
crossing time or so. This can happen even if the conditionsompatible with that of classical two body theory. However,
for violent relaxation are not likely to be satisfied—for ex- it was also compatible with a recent estimatd], derived
ample, when the system under consideration stays very clogegom the exponential divergence N-body systems in dy-
to virial equilibrium throughout the evolution and is not namical equilibrium, in which the relaxation time scales as
clumpy|[2]. ~N. It is then important to check how the relaxation time
(3) The relaxation of anisotropic velocity dispersions wastoward thermal equilibrium statgsvhich provides the only
found to be 3—4 times faster than energy relaxatiwhich  situation whereas the relaxation time in a three-dimensional
presumably determines the evolution toward thermal equilibgravitationalN-body system is well defingdscales withN.
rium in the case when this evolution is slpvOne therefore Results from a study of this type are currently being ana-
concludes that in gravitational systems, different quantitiedyzed [49].
may have different relaxation time scales. In particular, In the second case, we found that relaxation toward iso-
guantities that depend on the details of a given particle’sropic velocity distribution is considerably faster than that of
trajectory are likely to evolve at a different rate than its en-energy relaxation. If confirmed, this would be an important
ergy, which is a scalar integral of the motipt9]. result, with astrophysical applications to the study of such
(4) We have also conducted simulations of multimassphenomena as the ellipticity distributions of globular clus-
systems—other parameters being the same as in the corrers. Prigogine and Severft6], who predicted this effect on
sponding single mass runs. These systems did not tend tbe basis of a kinetic formulation of the problem which
stable thermal equilibria, but instead underwent gravotheravoided the introduction of a long range cutoff used to elimi-
mal catastrophécollapse. This appears to be triggered by nate divergence in the Coulomb logarithm, estimated that the
the statistically irreversible accumulation of heavy mass parvariation withN of the rate of randomization *of the kinetic
ticles in the central areas, which changes the ratio of centranergy to that of the transformatidaf the] potential energy
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into kinetic energy” (thermal time scale of energy relax- infinite medium(i.e., no mean field weak coupling approxi-
ation) goes as~InN. However Prigogine and Severne still mation, two body encounters, etc. Obviously, then, a direct
retained some of simplifying features reminiscent of theestimate of the variation witN for the aforementioned ratio
original Chandrasekhar formulation of the relaxation time:is also useful.
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